Mlynarski,9 and Mahrwald10 independently reported
enantioselective aldol-Tishchenko reactions of ketones
with aldehydes using lanthanum, ytterbium or titanium
complexes, enabling three or more contiguous chiral
centers with high selectivities to be created. Herein we
report a highly enantioselective aldol-Tishchenko reac-
tion with wide range of substrates using a simple lithium
base, chiral lithium diphenylbinaphtholate.11
The aldol-Tishchenko reaction of 2a and 3a at 0 °C
and subsequent debenzoylation gave the 1,3-diol as a
single product 6aa (1,2-anti-1,3-anti) with high enantios-
electivity (Table 1, entry 1). Transition-state model A
Table 1. Aldol-Tishchenko Reaction Catalyzed by 1b
We initially investigated the aldol-Tishchenko reac-
tion of 3-pentanone (2a) and benzaldehyde (3a) (2 equiv)
in the presence of lithium binaphtholate12 (1a) (10 mol %)
prepared from binaphthol and butyllithium (Scheme 2).
entry ketone
R3 (aldehyde)
product yield,a % ee,b %
Scheme 2. Aldol-Tishchenko Reaction Catalyzed by Lithium
Binaphtholate
1
2
3
4
5
6
7
8
9c
2a
2a
2a
2a
2a
2b
2c
2d
2e
Ph (3a)
6aa
6ab
6ac
6ad
6ae
6ba
6ca
7da
7ea
81
81
87
80
61
71
80
91
88
93
95
95
88
94
93
87
90
85
4-MeC6H4 (3b)
4-MeOC6H4 (3c)
4-BrC6H4 (3d)
PhCHdCH (3e)
Ph (3a)
Ph (3a)
Ph (3a)
Ph (3a)
a Isolated yield. b Determined by HPLC. c -23 °C.
The reaction proceeded to give the product as a mixture of
1-O-ester 4aa and 3-O-ester 5aa, but the chemical yields
and selectivities were unsatisfactory (13% yield, 24% ee
for 4aa and 20% yield, 24% ee for 5aa). After screening
binaphthol derivatives, we found that the dilithium salt of
3,30-diphenylbinaphthol (1b) gave monobenzoyl diols as
a mixture of 4aa (44%) and 5aa (23%) with enantioselec-
tivities of 85% ee.13 Isolated 4aa easily isomerized into a
mixture of 4aa and 5aa without losing enantioselectivi-
ties, suggesting that 5aa was produced by the acyl migra-
tion of the original aldol-Tishchenko product 4aa.14
proposed by early pioneers can explain the formation of
the 1,2-anti-1,3-anti isomer.7-10,15 Although slight de-
creased selectivity was observed in the reaction of bro-
mobenzaldehyde (3d) (entry 4), tolualdehyde (3b), and
anisaldehyde (3c) gave similar selectivities of 95% ee were
obtained in the reaction with 2a (entries 2 and 3). The
reaction of cinnamaldehyde 3e gave a slightly lower
chemical yield but with high selectivity (entry 5).
High enantioselectivities were also obtained using
other ketones as substrates. 4-Heptanone 2b gave a
similar result with 2a (entry 6). Cyclic ketones, cyclohex-
anone (2d), and cyclohexenone (2e) (entries 8 and 9) gave
diols of 1,2-syn-1,3-anti isomers 7da, 7ea in high enantios-
electivities as a single product, probably via tricyclic
transition state B proposed by Fang (Figure 1).15f It is
noteworthy that this is the highest level of enantioselec-
tivity for the aldol-Tishchenko reaction using simple
aliphatic ketones.
(9) (a) Mlynarski, J.; Mitura, M. Tetrahedron Lett. 2004, 45, 7549–
7552. (b) Mlynarski, J.; Jankowska, J.; Rakiel, B. Chem. Commun. 2005,
4854–4856. (c) Mlynarski, J.; Jankowska, J.; Rakiel, B. Tetrahedron:
Asymmetry 2005, 16, 1521–1526. (d) Mlynarski, J.; Rakiel., B.; Stodulski,
M.; Suszczynska, A.; Frelek, J. Chem.;Eur. J. 2006, 12, 8158–8167.
(10) (a) Rohr, K.; Herre, R.; Mahrwald, R. Org. Lett. 2005, 7, 4499–
4501. (b) Rohr, K.; Herre, R.; Mahrwald, R. J. Org. Chem. 2009, 74,
3744–3749.
(11) (a) Nakajima, M.; Orito, Y.; Ishizuka, T.; Hashimoto, S. Org.
Lett. 2004, 6, 3763–3765. (b) Orito, Y.; Hashimoto, S.; Ishizuka, T.;
Nakajima, M. Tetrahedron 2006, 62, 390–400. (c) Ichibakase, T.; Orito,
Y.; Nakajima, M. Tetrahedron Lett. 2008, 49, 4427–4429. (d) Tanaka,
K.; Ueda, T.; Ichibakase, T.; Nakajima, M. Tetrahedron Lett. 2010, 51,
2168–2169.
In the case of cyclopentanone (2f), which is a highly
reactive aldol donor, the byproduct derived from the
(12) Recent examples of using lithium binaphtholate as a catalyst:(a)
Schiffers, R.; Kagan, H. B. Synlett 1997, 1175–1178. (b) Holmes, I. P.;
Kagan, H. B. Tetrahedron Lett. 2000, 41, 7453–7456. (c) Hatano, M.;
Ikeno, T.; Miyamoto, T.; Ishihara, K. J. Am. Chem. Soc. 2005, 127,
10776–10777. (d) Hatano, M.; Ikeno, T.; Matsumura, T.; Torii, S.;
Ishihara, K. Adv. Synth. Catal. 2008, 350, 1776–1780. (e) Hatano, M.;
Horibe, T.; Ishihara, K. J. Am. Chem. Soc. 2010, 132, 56–57.
(13) Selectivities using catalysts derived from other 3,30-disubsituted
binaphthols: dimethyl; 28% ee, dichloro 58% ee.
(15) Mechanistic studies of the aldol-Tishchenko reaction: (a)
Evans, D. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1990, 112, 6447–
6449. (b) Burkhardt, E. R.; Bergman, R. G.; Heathcock, C. H. Organo-
metallics 1990, 9, 30–44. (c) Mahrwald, R.; Costisella, B. Synthesis 1996,
1087–1089. (d) Bodnar, P. M.; Shaw, J. T.; Woerpel, K. A. J. Org. Chem.
1997, 62, 5674–5675. (e) Abu-Hasanayn, F.; Streitwieser, A. J. Org.
Chem. 1998, 63, 2954–2960. (f) Lu, L.; Chang, H.-Y.; Fang, J.-M. J. Org.
Chem. 1999, 64, 843–853. (g) Mascarenhas, C. M.; Duffey, M. O.; Liu,
S.-Y.; Morken, J. P. Org. Lett. 1999, 1, 1427–1429. (h) Markert, M.;
Mahrwald, R. Synthesis 2004, 1429–1433.
(14) Acyl migration of the products is often observed in the aldol-
Tishchenko reaction; see ref 15.
1580
Org. Lett., Vol. 13, No. 7, 2011