The Journal of Organic Chemistry
NOTE
(s, 1H), 6.45 (d, J = 2.0 Hz, 1H), 6.39 (d, J = 2.0 Hz, 1H), 6.06 (s, 1H),
5.25-5.34 (m, 4H), 5.19 (d, J = 8.0 Hz, 1H), 5.13 (t, J = 9.5 Hz, 1H), 5.03
(t, J = 9.5 Hz, 1H), 3.90-3.94 (m, 1H), 3.84 (dd, J = 6.5, 9.5 Hz, 1H), 3.79
(dd, J = 3.0, 12.0 Hz, 1H), 3.67 (dd, J = 6.0, 12.0 Hz, 1H), 2.38 (s, 3H),
2.09 (s, 3H), 2.07 (s, 3H), 2.05 (s, 3H), 1.98 (s, 3H), 1.17 (d, J = 6.5 Hz,
3H). 13C NMR (CDCl3, 125 MHz): δ 182.6, 170.2, 170.0, 169.8, 169.7,
169.4, 169.2, 167.5, 162.3, 161.8, 157.8, 108.9, 106.7, 100.1, 98.1, 98.0,
94.7, 77.2, 73.6, 72.5, 71.0, 70.9, 69.4, 69.0, 68.8, 66.7, 66.2, 20.8, 20.73,
20.68, 20.61, 20.58, 20.4, 17.3. ESI HRMS: m/z calcd for C34H40O19Na
[M þ Na]þ 775.2061, found 775.2052.
’ REFERENCES
(1) (a) Clifford, M.; Brown, J. E. In Flavonoids: Chemistry, Bioche-
mistry and Applications; Andersen, Ø. M., Markham, K. R., Eds.; Taylor
& Francis: Boca Raton, FL, 2006; pp 319-370. (b) Dangles, O.; Dufour,
C. In Recent Advances in Polyphenol Research; Daayf, F., Lattanzio, V., Eds.;
Wiley-Blackwell: Ames, IA, 2008; Vol. 1, pp 67-83. (c) Mojzisova, G.;
Mojzis, J. Recent Prog. Med. Plants 2008, 21, 105. (d) Lopez-Lazaro, M.
Curr. Med. Chem.: Anti-Cancer Agents 2002, 2, 691.
(2) (a) Choi, E. J.; Lee, J. I.; Kim, G.-H. Int. J. Mol. Med. 2010,
25, 293. (b) Liu, H. L.; Jiang, W. B.; Xie, M. X. Recent Pat. Anti-Cancer
Drug Discovery 2010, 5, 152. (c) Drees, M.; Dengler, W. A.; Roth, T.;
Labonte, H.; Mayo, J.; Malspeis, L.; Grever, M.; Sausville, E. A.; Fiebig,
H. H. Clin. Cancer Res. 1997, 3, 273. (d) Ren, W.; Qiao, Z.; Wang, H.;
Zhu, L.; Zhang, L. Med. Res. Rev. 2003, 23, 519. (e) Hsu, S.; Yu, F.-X. X.;
Huang, Q.; Lewis, J.; Singh, B.; Dickinson, D.; Borke, J.; Sharawy, M.;
Wataha, J.; Yamamoto, T.; Osaki, T.; Schuster, G. Assay Drug Dev.
Technol. 2003, 1, 611. (f) Musialik, M.; Kuzmicz, R.; Pawzowski, T. S.;
Litwinienko, G. J. Org. Chem. 2009, 74, 2699. (g) Gilbert, E. R.; Liu, D.
Curr. Med. Chem. 2010, 17, 1756.
(3) Klausmeyer, P.; Zhou, Q.; Scudiero, D. A.; Uranchimeg, B.;
Melillo, G.; Cardellina, J. H.; Shoemaker, R. H.; Chang, C.-j.; McCloud,
T. G. J. Nat. Prod. 2009, 72, 805. The structure of 3 was not drawn
correctly in the reference.
(4) (a) Sch€onberg, A.; Badran, N.; Starkowsky, N. A. J. Am. Chem.
Soc. 1955, 77, 1019. (b) Bodendiek, S. B.; Mahieux, C.; Hansel, W.;
Wulff, H. Eur. J. Med. Chem. 2009, 44, 1838. (c) Sch€onberg, A.; Badran,
N.; Starkowsky, N. A. J. Am. Chem. Soc. 1955, 77, 5390. (d) Fillion, E.;
Dumas, A. M.; Kuropatwa, B. A.; Malhotra, N. R.; Sitler, T. C. J. Org.
Chem. 2005, 71, 409.
(5) The alternative approach to constructing 6,7-dimethylated4 using
the method recently developed by Fillion and co-workers5a via a
trifluoroacetic acid promoted annulation reaction between 3,4,5-tri-
methoxyphenol and 5-(1-methoxyethylidene) Meldrum’s acid afforded
only 5,6,7-trimethoxy-4-methylcoumarin instead of the desired 5,6,7-
trimethoxy-2-methylchromone on the basis of our careful NMR analysis
of the product. These two types of compounds could be unequivocally
differentiated by their diagnostic conjugated carbonyl carbon’s chemical
shift, where the chromone carbonyl carbon usually resonates around
175-185 ppm while that of coumarin moves upfield at 155-165 ppm.5b,c
We observed in the 13C NMR spectrum of the product that the carbonyl
carbon’s chemical shift was 160.9 ppm. Additionally, both 1H and
13C NMR spectra of the product were in full agreement with that of the
reported 5,6,7-trimethoxy-4-methylcoumarin, which was synthesized via
methylation of 5,7-dimethoxy-6-hydroxy-4-methylcoumarin. For related
references, see: (a) Agrawal, P. K. Carbon-13 NMR of Flavonoids; Elsevier
Science: Amsterdam, 1989. (b) Breitmaier, E.; Voelter, W. Carbon-13
NMR spectroscopy; VCH: Weinheim, Germany, 1987. (c) Parmar, V. S.;
Sharma, N. K.; Husain, M.; Watterson, A. C.; Kumar, J.; Samuelson, L. A.;
Cholli, A. L.; Prasad, A. K.; Kumar, A.; Malhotra, S.; Kumar, N.; Jha, A.;
Singh, A.; Singh, I.; Himanshu; Vats, A.; Shakil, N. A.; Trikha, S.;
Mukherjee, S.; Sharma, S. K.; Singh, S. K.; Kumar, A.; Jha, H. N.; Olsen,
C. E.; Stove, C. P.; Bracke, M. E.; Mareel, M. M. Bioorg. Med. Chem. 2003,
11, 913.
Representative Global Removal of Protecting Groups of
2-Methylchromone Rutinosides. 5-Hydroxy-7-O-β-rutino-
syl-2-methylchromone (3). To a stirred solution of compound 15
(20 mg, 0.027 mmol) in anhydrous methanol (4.0 mL) was added several
drops of freshly prepared 1 M NaOMe solution in methanol at room
temperature. The reaction mixture was stirred at room temperature for 1 h
before it was neutralized with Amberlyst-15 ion-exchange resin until the pH
value was around 7. The resin was filtered off and washed with methanol
several times. The collected filtrate was concentrated under reduced
pressure, affording a residue which was purified by a short silica gel column
chromatograph (CH2Cl2/MeOH, 4/1) to isolate the final product 3 (12
mg, 0.027 mmol) in quantitative yield. [R]D24 = -50.0° (c 0.1, MeOH).
1H NMR (DMSO-d6, 500 MHz): δ 12.78 (s, 1H), 6.64 (d, J = 2.0 Hz, 1H),
6.38 (d, J = 2.0 Hz, 1H), 6.24 (s, 1H), 5.44 (d, J = 4.5 Hz, 1H), 5.23 (t, J =
5.5 Hz, 1H), 5.00 (d, J = 7.0 Hz, 1H), 4.71 (d, J = 5.0 Hz, 1H), 4.60 (d, J =
4.5 Hz, 1H), 4.52 (s, 1H), 4.48 (d, J = 5.5 Hz, 1H), 3.87 (d, J = 10.0 Hz,
1H), 3.67 (br s, 1H), 3.59 (t, J = 8.0 Hz, 1H), 3.25-3.49 (m, 4H), 3.09-
3.19 (m, 2H), 2.42 (s, 3H), 1.10 (d, J= 6.5 Hz, 3H). 13CNMR(CDCl3, 125
MHz): δ 182.0, 168.7, 162.7, 161.0, 157.5, 108.2, 105.1, 100.7, 99.8, 99.6,
94.4, 76.4, 75.6, 73.0, 72.1, 70.7, 70.2, 69.9, 68.3, 66.4, 20.0, 17.8. ESI HRMS:
m/z calcd for C22H28O13Na [M þ Na]þ 523.1422, found 523.1468.
MTS Assay. The cytotoxicity of synthesized compounds was
evaluated by MTS assays using three cancer cell lines: MCF-7, K562,
and LS174T. The cancer cells were cultured in DMEM (Gibco) with
10% FBS (Gibco) (MCF-7, K562) or 20% FBS (LS174T) at 37 °C with
5% CO2. Briefly, a total of 2000 (LS174T) or 4000 (MCF-7, K562) cells
for each well were cultured overnight in a 96-well plate. Then, the
compounds of interest or Doxorubicin was added to each well at varying
concentrations (0.01, 0.1, 1, 10, 100 μM). After 4 days, MTS (3-(4,5-
dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-
2H-tetrazolium, 0.2 mg/mL) and PMS (phenazine methosulfate, 2.5
μM) were added to the cell culture and the cells were incubated at 37 °C
for 2-3 h. The absorbance of formazan (the metabolite of MTS by
viable cells) was measured at 490 nm to quantify the viable cells. The
growth ratio of treated cells was calculated by comparing the absorbance
to that of the nontreated cells.
’ ASSOCIATED CONTENT
S
Supporting Information. Text and figures giving details
b
(6) Li, M.; Han, X.; Yu, B. J. Org. Chem. 2003, 68, 6842.
of the experimental procedures and H NMR and 13C NMR
1
(7) Du, Y.; Wei, G.; Linhardt, R. J. J. Org. Chem. 2004, 69, 2206.
(8) Gadakh, B. K.; Patil, P. R.; Malik, S.; Kartha, K. P. R. Synth.
Commun. 2009, 39, 2430.
spectra of all new compounds. This material is available free of
(9) Wahlstrom, J. L.; Ronald, R. C. J. Org. Chem. 1998, 63, 6021.
(10) Sabitha, G.; Reddy, E. V.; Swapna, R.; Reddy, N. M.; Yadav, J. S.
Synlett 2004, 1276.
(11) (a) Rehder, K. S.; Kepler, J. A. Synth. Commun. 1996, 26, 4005.
(b) Morita, H.; Tomizawa, Y.; Deguchi, J.; Ishikawa, T.; Arai, H.; Zaima,
K.; Hosoya, T.; Hirasawa, Y.; Matsumoto, T.; Kamata, K.; Ekasari, W.;
Widyawaruyanti, A.; Wahyuni, T. S.; Zaini, N. C.; Honda, T. Bioorg. Med.
Chem. 2009, 17, 8234. (c) Yao, Y.-S.; Yao, Z.-J. J. Org. Chem. 2008,
73, 5221.
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: wang.892@osu.edu.
’ ACKNOWLEDGMENT
We thank the NIH (No. R01AI083754) for financial support
of this work.
2268
dx.doi.org/10.1021/jo102325s |J. Org. Chem. 2011, 76, 2265–2268