sponge, as evidenced by the large amounts of dead tissue in
the initial harvest of Leucascandra caveolata. Currently,
there is no natural source of leucascandrolide A. Based
on its impressive biological activity, inaccessibility from
natural sources, and structural complexity associated with
ample synthetic challenges, the construction of leucascan-
drolide A has spurred considerable synthetic interest,
resulting in several total and formal syntheses.3-5
hydroxyl under the Mitsunobu protocol. The alcohol
fragment 4 could be obtained through a late stage Prins-
cyclization (Scheme 2). The C11-C15 pyran of 7 could be
prepared following our recently reported protocol. The δ-
hydroxy R,β-unsaturated aldehyde 2 precursor for the
iodocyclization reaction as well as the acid fragment 8
could be obtained starting from a known chiral epoxide 9.
In this article, we present a unique synthetic solution for
the leucascandrolide problem featuring a concise, conver-
gent, and highly stereoselective approach to this complex
natural product. Our interest for 1 arose from studies in
which we demonstrated that the critical trans-2,6-disub-
stituted tetrahydropyran relevant to the C11-C15 frag-
ment would be prepared following a recently developed
iodocyclization of δ-hydroxy R,β-unsaturated aldehyde
with allyltrimethyl silane in the presence of molecular
iodine (Scheme 1).6 The second most important reaction
was to apply a Prins-type macrocyclization which has
recently emerged as a successful strategy in the synthesis
of polyketide derived complex natural products.7
Scheme 2. Retrosynthetic Analysis of Leucascandrolide A (1)
Scheme 1. Iodocyclization Protocol for the Synthesis of 3
Our retrosynthetic analysis for the total synthesis of
leucascandrolide A is illustrated in Scheme 2. Leucascan-
drolide A (1) would be derived from the macrolactone 4 by
attachment of the oxazole containing side chain at the C5
The application of allylation on δ-hydroxy R,β-unsatu-
rated aldehyde 2 with allyltrimethyl silane in the presence
of molecular iodine following our protocol6 facilitated an
eight-step preparation of the trans-2,6-disubstituted dihy-
dropyran 3 as the only product (Scheme 3). The prepara-
tion of 2 commenced with the conversion of the epoxide 98
into a homoallyl alcohol through the copper(I)-catalyzed9
addition of a vinyl Grignard reagent followed by cross-
metathesis with Hoveyda-Grubbs10 catalyst affording the
R,β-unsaturated aldehyde. It was then subjected to
(2) D’Ambrosio, M.; Tato, M.; Pocsfalvi, G.; Debitus, C.; Pietra, F.
Helv. Chim. Acta 1999, 82, 347.
(3) (a) Hornberger, K. R.; Hamblett, C. L.; Leighton, J. L. J. Am.
Chem. Soc. 2000, 122, 12894. (b) Wang, Y.; Janjic, J.; Kozmin, S. A. J.
Am. Chem. Soc. 2002, 124, 13670. (c) Fettes, A.; Carreira, E. M. Angew.
Chem., Int. Ed. 2002, 41, 4098. (d) Fettes, A.; Carriera, E. M. J. Org.
Chem. 2003, 68, 9247. (e) Paterson, I.; Tudge, M. Angew. Chem., Int. Ed.
2003, 42, 343. (f) Paterson, I.; Tudge, M. Tetrahedron 2003, 59, 6833.
(g) Wang, Y.; Jelena, J.; Kozmin, S. A. Pure Appl. Chem. 2005, 77, 1161.
(h) Su, Q.; Panek, J. S. Angew. Chem., Int. Ed. 2005, 44, 1223. (i) Su, Q.;
Dakin, L. A.; Panek, J. S. J. Org. Chem. 2007, 72, 2.
(4) (a) For syntheses of the macrolide core of leucascandrolide A, see:
(a) Kopecky, D. J.; Rychnovsky, S. D. J. Am. Chem. Soc. 2001, 123,
8420. (b) Wipf, P.; Reeves, J. T. Chem. Commun. 2002, 2066.
(c) Williams, D. R.; Plummer, S. V.; Patnaik, S. Angew. Chem., Int.
Ed. 2003, 42, 3934. (d) Williams, D. R.; Patnaik, S.; Plummer, S. V. Org.
Lett. 2003, 5, 5035. (e) Crimmins, M. T.; Siliphaivanh, P. Org. Lett. 2003,
(6) Mohapatra, D. K.; Das, P. P.; Pattanayak, M. R.; Yadav, J. S.
Chem.;Eur. J. 2010, 16, 2072.
(7) Crane, E. A.; Scheidt, K. A. Angew. Chem., Int. Ed. 2010, 49, 8316
and references therein.
ꢀ
5, 4641. (f) Ferrie, L.; Reymond, S.; Capdevielle, P.; Cossy, J. Org. Lett.
(8) (a) Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N.
Science 1997, 277, 936. (b) Schaus, S. E.; Brandes, B. D.; Larrow, J. F.;
Tokunaga, M.; Hansen, K. B.; Gould, A. E.; Furrow, M. E.; Jacobsen,
E. N. J. Am. Chem. Soc. 2002, 124, 1307. (c) Mori, K.; Shikichi, Y.;
Shankar, S.; Yew, J. Y. Tetrahedron 2010, 66, 7161.
2007, 9, 2461. (g) Jung, H. H.; Seiders, J. R.; Florencig, P. E. Angew.
Chem., Int. Ed. 2007, 46, 8464. (h) Ferrie, L.; Boulard, L.; Pradaux, F.;
Bouzbouz, S.; Reymond, S.; Capdevielle, P.; Cossy, J. J. Org. Chem.
2008, 73, 1864. (i) Evans, P. A.; Andrews, W. J. Angew. Chem., Int. Ed.
2008, 47, 5426.
ꢀ
(9) Ahmed, A.; Hoegenauer, E. K.; Enev, V. S.; Hanbauer, M.;
€
(5) For syntheses of fragments and analogues of leucascandrolide A,
see: (a) Crimmins, M. T.; Carroll, C. A.; King, B. W. Org. Lett. 2000, 2,
579. (b) Kozmin, S. A. Org. Lett. 2001, 3, 755. (c) Wipf, P.; Graham,
T. H. J. Org. Chem. 2001, 66, 3242. (d) Dakin, L. A.; Langille, N. F.;
Paneck, J. S. J. Org. Chem. 2002, 67, 6812. (e) Dakin, L. A.; Paneck, J. S.
Org. Lett. 2003, 5, 3995. (f) Ulanovskaya, O. A.; Janjic, J.; Suzuki, M.;
Sabharwal, S. S.; Schumacker, P. T.; Kron, S. J.; Kozmin, S. A. Nat.
Chem. Biol. 2008, 4, 418.
Kaehlig, H.; Ohler, E.; Mulzer, J. J. Org. Chem. 2003, 68, 3026.
(10) (a) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H.
J. Am. Chem. Soc. 2000, 122, 8168. (b) Dinh, M.-T.; Bouzbouz, S.;
Peglion, J. L.; Cossy, J. Tetrahedron 2008, 64, 5703.
ꢀ
ꢀ
(11) (a) Marigo, M.; Franzen, J.; Poulsen, T. B.; Zhuang, W.;
Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 6964. (b) Hayashi, Y.;
Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem., Int. Ed. 2005, 44, 4212.
Org. Lett., Vol. 13, No. 7, 2011
1711