Crystal Growth & Design
Article
(12) Gan
́
dara, F.; Furukawa, H.; Lee, S.; Yaghi, O. M. High Methane
efficient modulators for single crystals of zirconium and hafnium
metal-organic frameworks. J. Mater. Chem. A 2016, 4, 6955−6963.
(30) Garibay, S. J.; Cohen, S. M. Isoreticular synthesis and
modification of frameworks with the UiO-66 topology. Chem.
Commun. 2010, 46, 7700−7702.
Storage Capacity in Aluminum Metal−Organic Frameworks. J. Am.
Chem. Soc. 2014, 136, 5271−5274.
(13) Dan-Hardi, M.; Serre, C.; Frot, T.; Rozes, L.; Maurin, G.;
́
Sanchez, C.; Ferey, G. A New Photoactive Crystalline Highly Porous
Titanium(IV) Dicarboxylate. J. Am. Chem. Soc. 2009, 131, 10857−
10859.
(31) Kotnana, G.; Jammalamadaka, S. N. General structure analysis
system (GSAS). J. Appl. Phys. 2015, 117, 562.
(32) Gao, W.-Y.; Thiounn, T.; Wojtas, L.; Chen, Y.-S.; Ma, S. Two
highly porous single-crystalline zirconium-based metal-organic frame-
works. Sci. China: Chem. 2016, 59, 980−983.
(14) Feng, D.; Chung, W.-C.; Wei, Z.; Gu, Z.-Y.; Jiang, H.-L.; Chen,
Y.-P.; Darensbourg, D. J.; Zhou, H.-C. Construction of Ultrastable
Porphyrin Zr Metal-Organic Frameworks through Linker Elimination.
J. Am. Chem. Soc. 2013, 135, 17105−17110.
(15) Bai, Y.; Dou, Y.; Xie, L.-H.; Rutledge, W.; Li, J.-R.; Zhou, H.-C.
Zr-based metal-organic frameworks: design, synthesis, structure, and
applications. Chem. Soc. Rev. 2016, 45, 2327−2367.
(16) Naeem, A.; Ting, V. P.; Hintermair, U.; Tian, M.; Telford, R.;
Halim, S.; Nowell, H.; Holynska, M.; Teat, S. J.; Scowen, I. J.; Nayak,
S. Mixed-linker approach in designing porous zirconium-based metal-
organic frameworks with high hydrogen storage capacity. Chem.
Commun. 2016, 52, 7826−7829.
(17) Deng, H.; Doonan, C. J.; Furukawa, H.; Ferreira, R. B.; Towne,
J.; Knobler, C. B.; Wang, B.; Yaghi, O. M. Multiple Functional Groups
of Varying Ratios in Metal-Organic Frameworks. Science 2010, 327,
846−850.
(33) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.;
Bordiga, S.; Lillerud, K. P. A New Zirconium Inorganic Building Brick
Forming Metal Organic Frameworks with Exceptional Stability. J. Am.
Chem. Soc. 2008, 130, 13850−13851.
́
(34) Morris, W.; Volosskiy, B.; Demir, S.; Gandara, F.; McGrier, P.
L.; Furukawa, H.; Cascio, D.; Stoddart, J. F.; Yaghi, O. M. Synthesis,
Structure, and Metalation of Two New Highly Porous Zirconium
Metal-Organic Frameworks. Inorg. Chem. 2012, 51, 6443−6445.
(35) Gomez-Gualdron, D. A.; Gutov, O. V.; Krungleviciute, V.;
Borah, B.; Mondloch, J. E.; Hupp, J. T.; Yildirim, T.; Farha, O. K.;
Snurr, R. Q. Computational Design of Metal-Organic Frameworks On
the basis of Stable Zirconium Building Units for Storage and Delivery
of Methane. Chem. Mater. 2014, 26, 5632−5639.
(36) Marshall, R. J.; Griffin, S. L.; Wilson, C.; Forgan, R. S. Single-
Crystal to Single-Crystal Mechanical Contraction of Metal−Organic
Frameworks through Stereoselective Postsynthetic Bromination. J. Am.
Chem. Soc. 2015, 137, 9527−9530.
(37) Marshall, R. J.; Richards, T.; Hobday, C. L.; Murphie, C. F.;
Wilson, C.; Moggach, S. A.; Bennett, T. D.; Forgan, R. S. Postsynthetic
bromination of UiO-66 analogues: altering linker flexibility and
mechanical compliance. Dalton Trans. 2016, 45, 4132−4135.
(38) Yi, P.; Huang, H.; Peng, Y.; Liu, D.; Zhong, C. A series of
europium-based metal organic frameworks with tuned intrinsic
luminescence properties and detection capacities. RSC Adv. 2016, 6,
111934−111941.
(39) Peterson, G. W.; McEntee, M.; Harris, C. R.; Klevitch, A. D.;
Fountain, A. W.; Soliz, J. R.; Balboa, A.; Hauser, A. J. Detection of an
explosive simulant via electrical impedance spectroscopy utilizing the
UiO-66-NH2 metal-organic framework. Dalton Trans. 2016, 45,
17113−17116.
(40) Kandiah, M.; Nilsen, M. H.; Usseglio, S.; Jakobsen, S.; Olsbye,
U.; Tilset, M.; Larabi, C.; Quadrelli, E. A.; Bonino, F.; Lillerud, K. P.
Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chem. Mater.
2010, 22, 6632−6640.
(18) Qiao, Z.; Wang, N.; Jiang, J.; Zhou, J. Design of amine-
functionalized metal-organic frameworks for CO2 separation: the more
amine, the better? Chem. Commun. 2016, 52, 974−977.
(19) Anjum, M. W.; Vermoortele, F.; Khan, A. L.; Bueken, B.; De
Vos, D. E.; Vankelecom, I. F. J. Modulated UiO-66-Based Mixed-
Matrix Membranes for CO2 Separation. ACS Appl. Mater. Interfaces
2015, 7, 25193−25201.
(20) Wang, Q.; Song, X.; Zhang, M.; Liu, W.; Bai, J. Two New (3, 6)-
Connected MOFs with eea Topology and High CH4 Uptake. Cryst.
Growth Des. 2016, 16, 6156−6159.
(21) Du, L.; Lu, Z.; Zheng, K.; Wang, J.; Zheng, X.; Pan, Y.; You, X.;
Bai, J. Fine-Tuning Pore Size by Shifting Coordination Sites of Ligands
and Surface Polarization of Metal−Organic Frameworks To Sharply
Enhance the Selectivity for CO2. J. Am. Chem. Soc. 2013, 135, 562−
565.
(22) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.;
O’Keeffe, M.; Yaghi, O. M. Systematic Design of Pore Size and
Functionality in Isoreticular MOFs and Their Application in Methane
Storage. Science 2002, 295, 469−472.
(23) Zhang, Z.; Zhao, Y.; Gong, Q.; Li, Z.; Li, J. MOFs for CO2
capture and separation from flue gas mixtures: the effect of
multifunctional sites on their adsorption capacity and selectivity.
Chem. Commun. 2013, 49, 653−661.
(24) Ragon, F.; Campo, B.; Yang, Q.; Martineau, C.; Wiersum, A. D.;
Lago, A.; Guillerm, V.; Hemsley, C.; Eubank, J. F.; Vishnuvarthan, M.;
Taulelle, F.; Horcajada, P.; Vimont, A.; Llewellyn, P. L.; Daturi, M.;
Devautour-Vinot, S.; Maurin, G.; Serre, C.; Devic, T.; Clet, G. Acid-
functionalized UiO-66(Zr) MOFs and their evolution after intra-
framework cross-linking: structural features and sorption properties. J.
Mater. Chem. A 2015, 3, 3294−3309.
(25) Sheldrick, G. A short history of SHELX. Acta Crystallogr., Sect.
A: Found. Crystallogr. 2008, 64, 112−122.
(26) Toby, B. EXPGUI, a graphical user interface for GSAS. J. Appl.
Crystallogr. 2001, 34, 210−213.
(27) He, H.; Sun, F.; Aguila, B.; Perman, J. A.; Ma, S.; Zhu, G. A
bifunctional metal-organic framework featuring the combination of
open metal sites and Lewis basic sites for selective gas adsorption and
heterogeneous cascade catalysis. J. Mater. Chem. A 2016, 4, 15240−
15246.
(28) Gao, W.-Y.; Yan, W.; Cai, R.; Williams, K.; Salas, A.; Wojtas, L.;
Shi, X.; Ma, S. A pillared metal-organic framework incorporated with 1,
2, 3-triazole moieties exhibiting remarkable enhancement of CO2
uptake. Chem. Commun. 2012, 48, 8898−8900.
(29) Marshall, R. J.; Hobday, C. L.; Murphie, C. F.; Griffin, S. L.;
Morrison, C. A.; Moggach, S. A.; Forgan, R. S. Amino acids as highly
(41) Yang, D.; Bernales, V.; Islamoglu, T.; Farha, O. K.; Hupp, J. T.;
Cramer, C. J.; Gagliardi, L.; Gates, B. C. Tuning the Surface Chemistry
of Metal Organic Framework Nodes: Proton Topology of the Metal-
Oxide-Like Zr6 Nodes of UiO-66 and NU-1000. J. Am. Chem. Soc.
2016, 138, 15189−15196.
(42) DeCoste, J. B.; Peterson, G. W.; Jasuja, H.; Glover, T. G.;
Huang, Y.-G.; Walton, K. S. Stability and degradation mechanisms of
metal-organic frameworks containing the Zr6O4(OH)4 secondary
building unit. J. Mater. Chem. A 2013, 1, 5642−5650.
(43) Sagawa, N.; Shikata, T. Are all polar molecules hydrophilic?
Hydration numbers of nitro compounds and nitriles in aqueous
solution. Phys. Chem. Chem. Phys. 2014, 16, 13262−13270.
́
(44) Rasero-Almansa, A. M.; Corma, A.; Iglesias, M.; Sanchez, F.
Zirconium Materials from Mixed Dicarboxylate Linkers: Enhancing
the Stability for Catalytic Applications. ChemCatChem 2014, 6, 3426−
3433.
(45) Hu, Z.; Faucher, S.; Zhuo, Y.; Sun, Y.; Wang, S.; Zhao, D.
Combination of Optimization and Metalated-Ligand Exchange: An
Effective Approach to Functionalize UiO-66(Zr) MOFs for CO2
Separation. Chem. - Eur. J. 2015, 21, 17246−17255.
(46) Yuan, S.; Qin, J.-S.; Zou, L.; Chen, Y.-P.; Wang, X.; Zhang, Q.;
Zhou, H.-C. Thermodynamically Guided Synthesis of Mixed-Linker
Zr-MOFs with Enhanced Tunability. J. Am. Chem. Soc. 2016, 138,
6636−6642.
H
Cryst. Growth Des. XXXX, XXX, XXX−XXX