the isopropoxide groups adorning Ti2 are disordered over two
positions in a 55 : 45 ratio. The methyl groups of two Bu (C20,
Commun., 2009, 4115–4117; (e) J. E. Kasperczyk, Macromolecules,
1995, 28, 3937–3939; (f) B. T. Ko and C. C. Lin, J. Am. Chem. Soc.,
2001, 123, 7973–7977.
t
C50) functionalities are disordered over two positions again in a
55 : 45 ratio. In addition the methyl group of the piperazine ring is
disordered on three (C26–28) of the ring carbons in a 60 : 20 : 20
ratio. The disordered moieties have been refined isotropically. Only
one H-atom has been added to each carbon C26–28; Ti2(7)(OiPr)6
two isopropoxide groups were disordered in ratios of 70 : 30 and
80 : 20, these were refined isotropically. Lastly, in Ti2(8)(OiPr)6 two
isopropoxide groups were disordered in a 60 : 40 ratio.
3 (a) M. Bouyahyi, T. Roisnel and J. F. Carpentier, Organometallics, 2010,
29, 491–500; (b) M. H. Chisholm, J. C. Gallucci, K. T. Quisenberry and
Z. P. Zhou, Inorg. Chem., 2008, 47, 2613–2624; (c) A. L. Johnson,
M. G. Davidson, Y. Perez, M. D. Jones, N. Merle, P. R. Raithby and
S. P. Richards, Dalton Trans., 2009, 5551–5558; (d) B. Lian, H. Y. Ma,
T. P. Spaniol and J. Okuda, Dalton Trans., 2009, 9033–9042; (e) N.
Nomura, R. Ishii, Y. Yamamoto and T. Kondo, Chem.–Eur. J., 2007,
13, 4433–4451; (f) M. Shen, W. J. Zhang, K. Nomura and W. H. Sun,
Dalton Trans., 2009, 9000–9009.
4 (a) J. C. Buffet, J. Okuda and P. L. Arnold, Inorg. Chem., 2010, 49,
419–426; (b) A. Pietrangelo, M. A. Hillmyer and W. B. Tolman, Chem.
Commun., 2009, 2736–2737; (c) A. Pietrangelo, S. C. Knight, A. K.
Gupta, L. J. Yao, M. A. Hillmyer and W. B. Tolman, J. Am. Chem.
Soc., 2010, 132, 11649–11657.
5 (a) C. K. Williams, L. E. Breyfogle, S. K. Choi, W. Nam, V. G. Young,
M. A. Hillmyer and W. B. Tolman, J. Am. Chem. Soc., 2003, 125, 11350–
11359; (b) M. D. Jones, M. G. Davidson, C. G. Keir, L. M. Hughes,
M. F. Mahon and D. C. Apperley, Eur. J. Inorg. Chem., 2009, 635–642.
6 (a) A. Buchard, R. H. Platel, A. Auffrant, X. F. Le Goff, P. Le Floch and
C. K. Williams, Organometallics, 2010, 29, 2892–2900; (b) N. Ajellal,
D. M. Lyubov, M. A. Sinenkov, G. K. Fukin, A. V. Cherkasov, C. M.
Thomas, J. F. Carpentier and A. A. Trifonov, Chem.–Eur. J., 2008, 14,
5440–5448; (c) P. L. Arnold, J. C. Buffet, R. P. Blaudeck, S. Sujecki,
A. J. Blake and C. Wilson, Angew. Chem., Int. Ed., 2008, 47, 6033–6036.
7 (a) S. Gendler, S. Segal, I. Goldberg, Z. Goldschmidt and M. Kol,
Inorg. Chem., 2006, 45, 4783–4790; (b) Y. Kim, G. K. Jnaneshwara and
J. G. Verkade, Inorg. Chem., 2003, 42, 1437–1447; (c) E. Sergeeva, J.
Kopilov, I. Goldberg and M. Kol, Inorg. Chem., 2010, 49, 3977–3979;
(d) E. L. Whitelaw, M. D. Jones and M. F. Mahon, Inorg. Chem., 2010,
49, 7176–7181; (e) E. L. Whitelaw, M. D. Jones, M. F. Mahon and
G. Kociok-Kohn, Dalton Trans., 2009, 9020–9025; (f) A. L. Zelikoff,
J. Kopilov, I. Goldberg, G. W. Coates and M. Kol, Chem. Commun.,
2009, 6804–6806.
8 (a) R. A. Jain, Biomaterials, 2000, 21, 2475–2490; (b) J. Panyam and V.
Labhasetwar, Adv. Drug Delivery Rev., 2003, 55, 329–347.
9 Z. J. Zhang, X. P. Xu, S. Sun, Y. M. Yao, Y. Zhang and Q. Shen, Chem.
Commun., 2009, 7414–7416.
10 Y. J. Luo, W. Y. Li, D. Lin, Y. M. Yao, Y. Zhang and Q. Shen,
Organometallics, 2010, 29, 3507–3514.
11 N. C. Johnstone, E. S. Aazam, P. B. Hitchcock and J. R. Fulton,
J. Organomet. Chem., 2010, 695, 170–176.
12 S. Mohanty, D. Suresh, M. S. Balakrishna and J. T. Mague,
J. Organomet. Chem., 2009, 694, 2114–2121.
13 J. D. Farwell, P. B. Hitchcock, M. F. Lappert, G. A. Luinstra, A. V.
Protchenko and X. H. Wei, J. Organomet. Chem., 2008, 693, 1861–
1869.
14 (a) S. Mukhopadhyay, D. Mandal, P. B. Chatterjee, C. Desplanches,
J. P. Sutter, R. J. Butcher and M. Chaudhury, Inorg. Chem., 2004,
43, 8501–8509; (b) N. Sengottuvelan, D. Saravanakumar, S. Sridevi, V.
Narayanan and M. Kandaswamy, Supramol. Chem., 2004, 16, 129–136;
(c) K. Kubono, C. Noshita, K. Tani and K. Yokoi, Acta Crystallogr.,
Sect. E: Struct. Rep. Online, 2009, 65, m1685–U1593.
15 J. Lloyd, S. Z. Vatsadze, D. A. Robson, A. J. Blake and P. Mountford,
J. Organomet. Chem., 1999, 591, 114–126.
16 (a) R. Mayilmurugan, M. Sankaralingam, E. Suresh and M. Palanian-
davar, Dalton Trans., 2010, 39, 9611–9625; (b) R. Mayilmurugan, H.
Stoeckli-Evans, E. Suresh and M. Palaniandavar, Dalton Trans., 2009,
5101–5114.
Ligand and complex preparation
Typical procedures are as follows, see supporting information for
the characterisation of ligands 2H2–8H2 and their complexes.
1H2 2,4-di-methylphenol (8.50 g, 69.6 mmol), piperazine an-
hydrous (3.00 g, 34.8 mmol), and formaldehyde (38% in H2O)
(5.78 ml, 2.35 g, 78.1 mmol) were refluxed in MeOH (40 ml) for
24 h. During which time a white precipitate was observed this
was filtered and washed with cold MeOH and dried to yield a
1
white solid (5.64 g, 15.9 mmol, 46%). H NMR (CDCl3) 2.22
(6H, s, CH3), 2.23 (6H, s, CH3), 2.30–3.20 (8H, br, CH2), 3.67
(4H, s, CH2), 6.65 (2H, d, J = 1.5 Hz, ArH), 6.85 (2H, d, J =
1
1.5 Hz, ArH), 10.54 (2H, br, OH). 13C{ H} NMR (CDCl3) 15.7
(CH3), 20.5 (CH3), 52.4 (CH2), 61.4 (CH2), 119.9 (Ar), 124.7 (Ar),
126.9 (Ar–H), 127.9 (Ar), 138.8 (Ar–H), 153.4 (Ar–O). Calc. m/z
[C22H30N2O2 + H]+ 355.2385. Found 355.2488.
Ti2(1)(OiPr)6 1H2 (0.50 g, 1.41 mmol) and Ti(OiPr)4 (0.85 ml,
2.87 mmol) were dissolved in CH2Cl2 (30 ml) and stirred (16 h). The
solvent was removed in-vacuo and recrystallised from hot hexane
(40 ml) to yield a pale yellow crystals (0.51 g, 0.64 mmol, 45%).
The NMR was a mixture of Ti2(1)(OiPr)6 and Ti2(1)2(OiPr)4 and
Ti(OiPr)4 as discussed in the text. The NMRs for the individual
components are: Ti2(1)(OiPr)6 1H NMR (CDCl3) (233 K) 1.26
(36H, d, J = 6.0 Hz, CH3), 2.13 (6H, s, CH3), 2.15 (3H, s, CH3),
2.16 (3H, s, CH3), 2.30–3.90 (8H, br, CH2), 4.09 (4H, m, N–CH2–
Ar), 4.89 (6H, br, CH), 6.69 (2H, s Ar–H), 6.83 (2H, s, ArH).
Ti2(1)2(OiPr)4 1H NMR (233 K) 0.94 (3H, d, J = 6.0 Hz, CH3),
0.97 (3H, d, J = 6.0 Hz, CH3), 1.16 (6H, d, J = 6.0 Hz, Me), 1.20–
1.40 (12H, br, CH3), 2.08 (3H, s, Me), 2.10–2.25 (18H, br, CH3),
2.28 (3H, s, CH3), 2.30–3.90 (16H, br, CH2), 4.09 (8H, m, CH2),
4.89 (4H, b, CH), 6.57 (2H, s, Ar–H), 6.76 (2H, s, Ar–H), 6.84
(2H, s, Ar–H), 6.92 (2H, s, Ar–H). Ti(OiPr)4 1H NMR (CDCl3)
(233 K) 1.26 (24H, d, J = 6.0 Hz, CH3), 4.47 (4H, sept, J = 6.0 Hz,
1
CH). 13C{ H} NMR (CDCl3) 16.8 (CH3), 20.5 (CH3), 26.7 (CH3),
52.0 (CH2), 77.8 (CH), 122.7 (Ar), 124.8 (Ar), 127.0 (Ar), 127.7
(Ar–H), 130.8 (Ar–H), 158.2 (Ar–O). Calc.(%) for C40H70N2O8Ti2:
C 59.85, H 8.79, N 3.49. Found (%); C 59.3, H 8.80, N 3.72.
17 M. Du, X. J. Zhao, J. H. Guo, X. H. Bu and J. Ribas, Eur. J. Inorg.
Chem., 2005, 294–304.
18 J. Baldamus and E. Hecht, Z. Anorg. Allg. Chem., 2003, 629, 188–
191.
Notes and references
19 C. M. Manna, M. Shavit and E. Y. Tshuva, J. Organomet. Chem., 2008,
1 (a) O. Dechy-Cabaret, B. Martin-Vaca and D. Bourissou, Chem. Rev.,
2004, 104, 6147–6176; (b) R. H. Platel, L. M. Hodgson and C. K.
Williams, Polym. Rev., 2008, 48, 11–63; (c) N. Ajellal, J. F. Carpentier,
C. Guillaume, S. M. Guillaume, M. Helou, V. Poirier, Y. Sarazin and
A. Trifonov, Dalton Trans., 2010, 39, 8363–8376.
2 (a) C. N. Ayala, M. H. Chisholm, J. C. Gallucci and C. Krempner,
Dalton Trans., 2009, 9237–9245; (b) T. M. Ovitt and G. W. Coates,
J. Am. Chem. Soc., 2002, 124, 1316–1326; (c) L. M. Hodgson, R. H.
Platel, A. J. P. White and C. K. Williams, Macromolecules, 2008, 41,
8603–8607; (d) R. H. Platel, A. J. P. White and C. K. Williams, Chem.
693, 3947–3950.
20 (a) M. G. Finn and K. B. Sharpless, J. Am. Chem. Soc., 1991, 113,
113–126; (b) T. J. Boyle, D. L. Barnes, J. A. Heppert, L. Morales, F.
Takusagawa and J. W. Connolly, Organometallics, 1992, 11, 1112–1126.
21 A. J. Chmura, M. G. Davidson, M. D. Jones, M. D. Lunn, M. F.
Mahon, A. F. Johnson, P. Khunkamchoo, S. L. Roberts and S. S. F.
Wong, Macromolecules, 2006, 39, 7250–7257.
22 G. M. Sheldrick, SHELXL-97, Program for refinement of crystal
structures, University of Go¨ttingen, Germany, 1997.
This journal is
The Royal Society of Chemistry 2011
Dalton Trans., 2011, 40, 2033–2037 | 2037
©