No hindered hydroboranes were thus needed for the control
of the regioselectivity. In addition, the crystal structure of 5
was determined by X-ray diffraction from samples grown by
K. J. Guenther, A. S. King, P. Morel, P. Schaffer, O. O. Sogbein
and K. A. Stephenson, Coord. Chem. Rev., 2002, 232, 173;
(e) R. F. Barth, J. A. Coderre, M. G. H. Vicente and T. E. Blue,
Clin. Cancer Res., 2005, 11, 3987; (f) V. I. Bregadze and
I. B. Sivaev, Eur. J. Inorg. Chem., 2009, 1433 and references
therein.
slow evaporation from an ethanol/water solution (Fig. 4).14
A
three-dimensional hydrogen bonded network involving all
O–H and Ccluster–H units dominates the crystal lattice. In
addition, the quadruped-like molecular structure displayed
by 5 illustrates the unique four-fold armed array on the
cluster. This anticipates a versatile chemistry for dendritic
growth, given the availability of the four terminal hydroxyl
groups for further elongation of the chains. Moreover,
the Ccluster–H vertices on the rigid head remain ready for
derivatization or supramolecular assembly. Work is underway
to attain larger polyfunctionalized molecules from 5.
3 (a) B. P. Dash, R. Satapathy, E. R. Gaillard, J. A. Maguire and
N. S. Hosmane, J. Am. Chem. Soc., 2010, 132, 6578; (b) R. Nu
A. Gonza
Org. Lett., 2005, 7, 231; (c) A. Gonza
Perez, C. Vinas, B. Boury, R. Sillanpaa, R. Kivekas and R. Nu
´ nez,
´
lez, C. Vinas, F. Teixidor, R. Sillanpaa and R. Kivekas,
¨
¨
¨
rez-
´
lez- Campo, E. J. Jua
´
´
´
nez,
¨
¨
¨
Macromolecules, 2008, 41, 8458; (d) A. Mollard and I. Zharov,
Inorg. Chem., 2006, 45, 10172; (e) G. Wu, R. F. Barth, W. L. Yang,
M. Chatterjee, W. Tjarks, M. J. Ciesielski and R. A. Fenstermaker,
Bioconjugate Chem., 2004, 15, 185; (f) D. Armspach, M. Cattalini,
E. C. Constable, C. E. Housecroft and D. Phillips, Chem.
Commun., 1996, 1823; (g) E. Hao, E. Friso, G. Miotto,
G. Jori, M. Soncin, C. Fabris, M. Sibrian-Vazquez and
M. G. H. Vicente, Org. Biomol. Chem., 2008, 6, 3732;
(h) H. J. Yao, R. N. Grimes, M. Corsini and P. Zanello, Organo-
metallics, 2003, 22, 4381.
The o-carborane cluster then provides a unique platform for
the construction of highly dense multibranched molecules with
a wide range of possibilities for derivatization. Derivatives of
o-carborane with precise patterns of substitution can be
prepared by judicious choice of the synthetic procedure. We
have coupled four hydroxyl terminated arms onto a specific,
compact area of the cluster occupied by four adjacent boron
vertices, ultimately leading to a quadruped-shaped structure
which might serve as a versatile dendritic precursor. The
system also offers the possibility for uneven substitution,
e.g., 8,10-aryl2-9,12-I2-1,2-closo-C2B10H8 in which the two
iodine atoms are ready for substitution with less crowded
substituents. Moreover, the Ccluster–H vertices on the rigid
o-carborane head are available as further linking points for
organic moieties, hydrogen bond acceptors, transition metals,
nanoparticles or surfaces. The generation of diverse macro-
molecules and supramolecular assemblies constitutes a main
focus for our current research and related advances will be
reported in the near future.
4 (a) L. Ma, J. Hamdi, F. Wong and M. F. Hawthorne, Inorg.
Chem., 2006, 45, 278; (b) T. J. Li, S. S. Jalisatgi, M. J. Bayer,
A. Maderna, S. I. Khanm and M. F. Hawthorne, J. Am. Chem.
Soc., 2005, 127, 17832.
5 R. Nu´ nez, A. Gonzalez-Campo, A. Laromaine, F. Teixidor,
´
R. Sillanpaa, R. Kivekas and C. Vinas, Org. Lett., 2006, 8,
4549.
¨
¨
¨
6 (a) F. Teixidor and C. Vinas, in Science of Synthesis., ed.
D. E. Kaufmann and D. S. Matteson, Georg Thieme Verlag,
Stuttgart, 2005; (b) V. I. Bregadze, Chem. Rev., 1992, 92, 209;
(c) R. N. Grimes, Carboranes, Academic Press, New York, 1970.
7 H. D. Smith, T. A. Knowles and H. Schroeder, Inorg. Chem., 1965,
4, 107.
8 J. A. Potenza, W. N. Lipscomb, G. D. Vickers and H. Schroeder,
J. Am. Chem. Soc., 1966, 88, 628.
9 (a) L. I. Zakharkin, A. I. Kovredov, V. A. Olshevskaya and
Z. S. Shaugumbekova, J. Organomet. Chem., 1982, 226, 217;
(b) J. Li, C. F. Logan and M. Jones, Inorg. Chem., 1991, 30,
4866; (c) Z. P. Zheng, W. Jiang, A. A. Zinn, C. B. Knobler and
M. F. Hawthorne, Inorg. Chem., 1995, 34, 2095; (d) G. Barbera,
A. Vaca, F. Teixidor, R. Sillanpaa, R. Kivekas and C. Vinas,
¨
¨
¨
Inorg. Chem., 2008, 47, 7309 and references therein.
10 A. Vaca, F. Teixidor, R. Kivekas, R. Sillanpaa and C. Vinas,
Dalton Trans., 2006, 4884.
This work was supported by Generalitat de Catalunya
¨
¨
¨
209/SGR/00279 and Spanish Ministerio de Ciencia
Innovacion by CTQ2010-16237.
e
´
11 Crystal data for 4. C14H18B10I2, Mr = 548.18, tetragonal, space
group P42/n c m (no. 138), a = b = 9.7507(3), c = 21.3372(8) A,
a = b = g = 901, V = 2028.66(12) A3, T = 173(2) K, Z = 4,
m(Mo-Ka) = 3.095 mmÀ1, 10 054 reflections collected, 1080 unique
reflections (Rint = 0.054) which were used in calculations. The final
wR(F2) was 0.0765 (all data) and R[F2 > 2s(F2)] = 0.0359.
12 A. Franken, C. A. Kilner, M. Thornton-Pett and J. D. Kennedy,
Chem. Commun., 2002, 2048.
Notes and references
1 (a) R. N. Grimes, Angew. Chem., Int. Ed. Engl., 1993, 32, 1289;
(b) T. J. Wedge and M. F. Hawthorne, Coord. Chem. Rev., 2003,
240, 111; (c) M. A. Fox and A. K. Hughes, Coord. Chem. Rev.,
2004, 248, 457; (d) P. C. Andrews, M. J. Hardie and C. L. Raston,
Coord. Chem. Rev., 1999, 189, 169; (e) B. H. Northrop, H. B. Yang
and P. J. Stang, Chem. Commun., 2008, 5896; (f) A. V. Puga,
13 (a) H. Lee, C. B. Knobler and M. F. Hawthorne, Chem. Commun.,
2000, 2485; (b) M. J. Hardie and C. L. Raston, Eur. J. Inorg.
Chem., 1999, 195.
F. Teixidor, R. Sillanpaa, R. Kivekas, M. Arca, G. Barbera and
¨
¨
¨
C. Vinas, Chem.–Eur. J., 2009, 15, 9755; (g) A. V. Puga,
F. Teixidor, R. Sillanpaa, R. Kivekas, M. Arca, G. Barbera and
C. Vinas, Chem.–Eur. J., 2009, 15, 9764.
14 Crystal data for 5. C14H36B10O4, Mr = 376.53, monoclinic, space
group P21/n (no. 14), a = 12.1257(5), b = 14.7447(6), c = 13.6855(5)
A, a = 90, b = 113.738(2), g = 901, V = 2239.82(15) A3, T = 173(2)
K, Z = 4, m(Mo-Ka) = 0.068 mmÀ1, 8518 reflections collected,
4395 unique reflections (Rint = 0.050) which were used in calcula-
tions. The final wR(F2) was 0.1835 (all data) and R[F2 > 2s(F2)] =
0.0746.
¨
¨
¨
2 (a) M. F. Hawthorne, Angew. Chem., Int. Ed. Engl., 1993, 32, 950;
(b) A. H. Soloway, W. Tjarks, B. A. Barnum, F. G. Rong,
R. F. Barth, I. M. Codogni and J. G. Wilson, Chem. Rev., 1998,
98, 1515; (c) V. I. Bregadze, I. B. Sivaev, D. Gabel and D. Wohrle,
¨
J. Porphyrins Phthalocyanines, 2001, 5, 767; (d) J. F. Valliant,
c
2254 Chem. Commun., 2011, 47, 2252–2254
This journal is The Royal Society of Chemistry 2011