The Journal of Organic Chemistry
Article
136.7, 129.0, 128.2, 84.7, 79.0, 74.0, 36.0, 27.8, 21.6. To a solution of
tert-butyl prop-2-yn-1-yl(tosyl)carbamate (400 mg, 1.30 mmol) in
THF (2.5 mL) was added LiHMDS (1.0 M in THF, 1.3 mL, 1.3
mmol), and the mixture was stirred for 30 min at −78 °C. After
addition of MeI (0.81 mL, 1.3 mmol), the reaction mixture was
allowed to warm to room temperature and stirred for 3 h. Saturated
aqueous NH4Cl (10 mL) was added, and the mixture was extracted
with Et2O (15 mL × 3). The combined organic layer was washed with
brine (10 mL), dried over MgSO4, filtered, and concentrated under the
reduced pressure. The crude product was purified by silica gel column
chromatography (n-hexane:EtOAc = 3:1 v/v) to give tert-butyl but-2-
yn-1-yl(tosyl)carbamate19 (394 mg, 94%): 1H NMR (300 MHz,
CDCl3): δ 7.92 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.2 Hz, 2H), 4.58 (q, J
= 2.2 Hz, 2H), 2.45 (s, 3H), 1.84 (t, J = 2.3 Hz, 3H), 1.35 (s, 9H). 13C
NMR (150 MHz, CDCl3): 150.4, 144.2, 136.9, 129.1, 128.2, 84.6,
79.9, 74.3, 36.3, 27.8, 21.6. To a solution of tert-butyl but-2-yn-1-
yl(tosyl)carbamate (394 mg, 1.22 mmol) in EtOAc (15 mL) was
added 5% Pd on CaCO3 (118 mg), and the resulting suspension was
stirred overnight under H2 at room temperature. The mixture was
filtered through Celite and concentrated under reduced pressure. The
residue was purified by silica gel column chromatography (n-
hexane:EtOAc = 20:1 v/v) to give (Z)-tert-butyl but-2-en-1-yl(tosyl)-
carbamate19 (237 mg 60%): 1H NMR (300 MHz, CDCl3): δ 7.80 (d, J
= 8.0 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 5.68 (m, 1H), 5.53 (m, 1H),
4.51 (d, J = 6.7 Hz, 2H), 2.43 (s, 3H), 1.77 (d, J = 6.8 Hz, 3H), 1.34
(s, 9H); 13C NMR (150 MHz, CDCl3): δ 150.7, 144.0, 137.2, 129.2,
128.1, 127.0, 125.6, 84.2, 43.5, 27.7, 21.5, 13.3. To a solution of (Z)-
tert-butyl but-2-en-1-yl(tosyl)carbamate (237 mg, 0.732 mmol) in
CH2Cl2 (3 mL) was added CF3CO2H (1 mL) at 0 °C, and the
reaction mixture was allowed to warm to room temperature and stirred
for 2 h. The mixture was concentrated under reduced pressure and
dissolved in CH2Cl2 (20 mL). The solution was washed with saturated
aqueous NaHCO3 (5 mL) and brine (5 mL), dried over MgSO4,
filtered, and concentrated. The residue was purified by silica gel
column chromatography (n-hexane:EtOAc = 1:1 v/v) to afford (Z)-N-
(but-2-en-1-yl)-4-methylbenzenesulfonamide19 (159 mg, 97%): 1H
NMR (300 MHz, CDCl3): δ 7.75 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.0
Hz, 2H), 5.52 (m, 1H), 5.29 (m, 1H), 5.13 (bs, 1H), 3.60 (m, 2H),
2.43 (s, 3H), 1.54 (d, J = 6.8 Hz, 3H); 13C NMR (150 MHz, CDCl3):
δ 143.2, 136.4, 128.7, 127.8, 126.7, 124.6, 39.5, 20.5, 12.6. To a
suspension of NaH (60% in mineral oil, 32 mg, 0.78 mmol) in DMF
(0.5 mL) was added a solution of the Boc-deprotected compound
(159 mg, 0.71 mmol) in DMF (1.5 mL) at 0 °C, and the mixture was
stirred for 10 min. To the mixture was added trans-crotyl bromide
(85%, 0.105 mL, 0.78 mmol), and the resulting mixture was allowed to
warm to room temperature and stirred for 4 h. After addition of
saturated aqueous NH4Cl (5 mL) at 0 °C, the mixture was extracted
with Et2O (10 mL × 3). The combined organic layer was washed with
brine (5 mL), dried over MgSO4, filtered, and concentrated. The
residue was purified by silica gel column chromatography (n-
hexane:EtOAc = 10:1 v/v) to give ZE-ene (188 mg, 95%): 1H
NMR (300 MHz, CDCl3): δ 7.72 (d, J = 8.1 Hz, 2H), 7.31 (d, J = 8.0
Hz, 2H), 5.56 (m, 2H,), 5.28 (m, 2H,), 3.85 (d, J = 6.4 Hz, 2H), 3.74
(d, J = 6.5 Hz, 2H), 2.43 (s, 3H), 1.65 (d, J = 6.4 Hz, 3H), 1.60 (d, J =
6.6 Hz, 3H); 13C NMR (150 MHz, CDCl3): δ 143.3, 137.9, 130.6,
129.9, 128.6, 128.4, 127.5, 125.8, 125.3, 125.2, 49.1, 43.1, 21.8, 18.0,
13.1; IR (film): cm−1 3023, 2923, 2861, 1728, 1662, 1596, 1492, 1342,
933, 821, 724; HRMS (ESI) (m/z): calcd for C15H21NNaO2S [M +
Na]+ 302.1191, found 302.1185.
were obtained as a function of time. The area of the fluorescence
curve, designated the fluorescence intensity, was calculated.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
UV−vis spectra of Ru catalysts, and fluorescence spectra
of substrates, global fitting analysis of FRET data, and 1H
and 13C NMR spectra of new compounds and their
AUTHOR INFORMATION
Corresponding Authors
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the NRF (Grants
2 0 1 4 R 1 A 1 A 4 A 0 1 0 0 7 9 3 3 , 2 0 1 1 0 0 2 9 1 9 4 , a n d
2016R1A2A1A05005509), the research fund of Chungnam
National University, and IBS-R004-G2.
REFERENCES
■
(1) Patel, A. R.; Dewettinck, K. Food Funct. 2016, 7, 20−29.
(2) For selected recent reviews on FRET, see: (a) Haugland, R. P.
The Handbook. A Guide to Fluorescent Probes and Labeling Technologies,
10th ed.; Invitrogen: San Diego, CA, 2005. (b) Sapsford, K. E.; Berti,
L.; Medintz, I. L. Angew. Chem., Int. Ed. 2006, 45, 4562−4588.
(c) Miyawaki, A. Annu. Rev. Biochem. 2011, 80, 357−373. (d) Wu, J.;
Liu, W.; Ge, J.; Zhang, H.; Wang, P. Chem. Soc. Rev. 2011, 40, 3483−
3495. (e) Gell, D. A.; Grant, R. P.; MacKay, J. P. Adv. Exp. Med. Biol.
2012, 747, 19−41. (f) Yuan, L.; Lin, W.; Zheng, K.; Zhu, S. Acc. Chem.
Res. 2013, 46, 1462−1473. (g) Mohsin, M.; Ahmad, A.; Iqbal, M.
Biotechnol. Lett. 2015, 37, 1919−1928. (h) Stanisavljevic, M.; Krizkova,
S.; Vaculovicova, M.; Kizek, R.; Adam, V. Biosens. Bioelectron. 2015, 74,
562−574.
(3) (a) Sohn, J.-H.; Kim, K. H.; Lee, H.-Y.; No, Z. S.; Ihee, H. J. Am.
Chem. Soc. 2008, 130, 16506−16507. (b) Lim, S.-G.; Blum, S. A.
Organometallics 2009, 28, 4643−4645. (c) Kim, K. H.; Ok, T.; Lee, K.;
Lee, H.-S.; Chang, K. T.; Ihee, H.; Sohn, J.-H. J. Am. Chem. Soc. 2010,
132, 12027−12033. (d) Vorfalt, T.; Wannowius, K. J.; Thiel, V.;
Plenio, H. Chem. - Eur. J. 2010, 16, 12312−12315. (e) Lee, O. S.; Kim,
K. H.; Kim, J.; Kwon, K.; Ok, T.; Ihee, H.; Lee, H.-Y.; Sohn, J.-H. J.
Org. Chem. 2013, 78, 8242−8249. (f) Kos, P.; Plenio, H. Chem. - Eur. J.
2015, 21, 1088−1095.
(4) For reviews on the applications of FRET to organic reactions,
see: (a) Cordes, T.; Blum, S. A. Nat. Chem. 2013, 5, 993−999.
(b) Hensle, E. M.; Esfandiari, N. M.; Lim, S.-G.; Blum, S. A. Eur. J.
Org. Chem. 2014, 2014, 3347−3354.
(5) For representative reviews on olefin metathesis, see: (a) Schrock,
R. R. Angew. Chem., Int. Ed. 2006, 45, 3748−3759. (b) Hoveyda, A. H.;
Zhugralin, A. R. Nature 2007, 450, 243−251. (c) Samojlowicz, C.;
Bieniek, M.; Grela, K. Chem. Rev. 2009, 109, 3708−3742.
(d) Vougioukalakis, G. C.; Grubbs, R. H. Chem. Rev. 2010, 110,
1746−1787. (e) Lozano-Vila, A. M.; Monsaert, S.; Bajek, A.; Verpoort,
F. Chem. Rev. 2010, 110, 4865−4909. (f) Kress, S.; Blechert, S. Chem.
Soc. Rev. 2012, 41, 4389−4408. (g) Nelson, D. J.; Manzini, S.; Urbina-
Blanco, C. A.; Nolan, S. P. Chem. Commun. 2014, 50, 10355−10375.
(h) Handbook of Metathesis; Grubbs, R. H., O’Leary, D. J., Wetzel, A.
G., Khosravi, E., Eds.; Wiley-VCH: Weinheim, Germany, 2015.
(6) (a) Marinescu, S. C.; Levine, D. S.; Zhao, Y.; Schrock, R. R.;
Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133, 11512−11514.
Measurement of Time-Dependent Fluorescence Quenching
Signal. The time-dependent fluorescence quenching signal was
measured by a Shimadzu RF-5301PC fluorometer with excitation at
350 nm and an excitation and emission slit width of 2 nm. Samples
were prepared with anhydrous solvent (CH2Cl2, PhMe or n-hexane)
and measured under Ar. A solution of a substrate in solvent (3.0 mL)
in a 10 × 10 mm quartz cuvette was placed in the temperature-
controlled holder of the fluorometer, and the fluorescence spectrum at
time zero was acquired. A Ru catalyst solution (3.0 mM) was added to
the substrate solution using a syringe, and the fluorescence spectra
E
J. Org. Chem. XXXX, XXX, XXX−XXX