D. Danalev et al. / Tetrahedron Letters 52 (2011) 1121–1123
1123
like also to thank National Research Fund of Bulgaria for a financial
support (contract DOO2-296).
AcO
AcO
N2H4.AcOH
OAc
O
O
OH
AcO
AcO
AcO
DMF
OAc
OAc
Supplementary data
AcO
38%
5
2
Supplementary data associated with this article can be found, in
CCl3
NH
CCl3CN
DBU
CH2Cl2
O
AcO
O
References and notes
AcO
AcO
OAc
1. de Lederkremer, R. M.; Colli, W. Glycobiology 1995, 5, 547–552.
2. Peltier, P.; Euzen, R.; Daniellou, R.; Nugier-Chauvin, C.; Ferrières, V. Carbohydr.
Res. 2008, 343, 1897–1923.
3. Richards, M.; Lowary, T. ChemBioChem 2009, 10, 1920–1938.
4. Rudd, P. M.; Joao, H. C.; Coghill, E.; Fiten, P.; Saunders, M. R.; Opdenakker, G.;
Dwek, R. A. Biochemistry 1994, 33, 17–22.
88%
4
Scheme 2. Synthesis of b-D-galactofuranosyl trichloroacetimidate 4.
5. Susaki, H.; Suzuki, K.; Ikeda, M.; Yamada, H.; Watanabe, H. K. Chem. Pharm. Bull.
1998, 46, 1530–1537.
6. Wallis, G. L. F.; Hemming, F. W.; Peberdy, J. F. Biochim. Biophys. Acta 2001, 1525,
19–28.
7. Hemming, F. W.; Wallis, G. L. F.; Peberdy, J. F. Anal. Biochem. 2000, 279, 136–
141.
8. Wallis, G. L. F.; Easton, R. L.; Jolly, K.; Hemming, F. W.; Peberdy, J. F. Eur. J.
Biochem. 2001, 268, 4134–4143.
9. Chlubnova, I.; Filipp, D.; Spiwok, V.; Dvorakova, H.; Daniellou, R.; Nugier-
Chauvin, C.; Kralova, B.; Ferrières, V. Org. Biomol. Chem. 2010, 8, 2092–2102.
10. Buskas, T.; Ingale, S.; Boons, G.-J. Glycobiology 2006, 16, 113R–136R.
11. Davis, B. Angew. Chem., Int. Ed. 2009, 48, 4674–4678.
12. Davis, B. G. Chem. Rev. 2002, 102, 579–602.
13. Gamblin, D. P.; Scanlan, E. M.; Davis, B. G. Chem. Rev. 2008, 109, 131–163.
14. Taylor, C. M. Tetrahedron 1998, 54, 11317–11362.
15. Bonache, M. A.; Nuti, F.; Le Chevalier Isaad, A.; Real-Fernández, F.; Chelli, M.;
Rovero, P.; Papini, A. M. Tetrahedron Lett. 2009, 50, 4151–4153.
16. Ginisty, M.; Gravier-Pelletier, C.; Le Merrer, Y. Tetrahedron: Asymmetry 2006,
17, 142–150.
fore on furanosides as previous groups have preferentially used
thiophenyl furanosides as intermediates.
On the assumption that furanoses are more reactive than pyra-
noses, regioselectivity was ensured by limiting reaction time to 1 h.
Under these conditions, the corresponding hemiacetal was isolated
in 38% yield at best. Beyond this time, mixture was observed. Fur-
ther conversion into the desired trichloroacetimidate
4 was
achieved by reaction with trichloroacetonitrile in the presence of
1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in 88% yield.
As expected, trichloroacetimidate 4 proved to be the best donor
and allowed us to readily glycosylate cysteine under common
TMSOTf activation in 80% yield (Table 2, entry 6).31
As for the introduction of serine, t-butyloxycarbonyl protection
turned out to be not compatible with the acidic conditions em-
ployed. Gratifyingly, N-benzylcarbamate serine methyl ester was
a good acceptor and reacted with the various donors 2 (Table 2, en-
try 2), 3 (entries 4 and 5) and 4 (entry 7). Interestingly, a weaker
Lewis acid, copper(II) triflate was required with thioimidate 3.
These results illustrated the importance of the Lewis acid nature
for glycosylation reactions.21 Optimized yields were obtained once
again with trichloroacetimidate 4 to give O-galactofuranosyl serine
in 75% yield.
17. Kurosu, M.; Li, K. J. Org. Chem. 2008, 73, 9767–9770.
18. Driguez, H. In Glycoscience Synthesis of Substrate Analogs and Mimetics; Driguez,
H., Thiem, J., Eds.; Springer: Berlin/Heidelberg, 1997; Vol. 187, pp 85–116.
19. Arsequell, G.; Valencia, G. Tetrahedron: Asymmetry 1997, 8, 2839–2876.
20. Kihlberg, J.; Aahman, J.; Walse, B.; Drakenberg, T.; Nilsson, A.; Soederberg-
Ahlm, C.; Bengtsson, B.; Olsson, H. J. Med. Chem. 1995, 38, 161–169.
21. Pachamuthu, K.; Schmidt, R. R. Chem. Rev. 2006, 106, 160–187.
22. Knapp, S.; Myers, D. S. J. Org. Chem. 2002, 67, 2995–2999.
23. Baran, E.; Drabarek, S. Pol. J. Chem. 1978, 52, 941.
24. Ferrières, V.; Gelin, M.; Boulch, R.; Toupet, L.; Plusquellec, D. Carbohydr. Res.
1998, 314, 79–83.
25. NMR data for all new compounds are given in Supplementary data.
26. Euzen, R.; Ferrières, V.; Plusquellec, D. Carbohydr. Res. 2006, 341, 2759–2768.
27. Morales-Sanfrutos, J.; Lopez-Jaramillo, J.; Ortega-Munoz, M.; Megia-Fernandez,
A.; Perez-Balderas, F.; Hernandez-Mateo, F.; Santoyo-Gonzalez, F. Org. Biomol.
Chem. 2010, 8, 667–675.
3. Conclusion
28. Vezenkov, L.; Mladenova-Orlinova, L. D. Bolgarskoj akad. nauk 1990, 43, 61–63.
29. Completo, G. C.; Lowary, T. L. J. Org. Chem. 2008, 73, 4513–4525.
30. de la Fuente, J. M.; Penadés, S. Tetrahedron: Asymmetry 2002, 13, 1879–1888.
To summarize, new galactofuranosyl amino acids building
blocks were synthesized starting from readily available per-
O-acetylated and pyrimidoyl donors. It included galactofuranosyl
serine and a small library of alkyl 1-thio-galactofuranosides.
The incorporation of cysteine proved to be more challenging and
forced us to use the more reactive trichloroacetimidate donor.
Further studies to conjugate hexofuranosyl amino acids and
analogues onto more complex biomolecules are presently under
investigation.
31. Typical procedure for S-furanosylation of cysteine:
trichloroacetimidate donor 4 (40 mg, 81 mol), N-acetyl-
ester (11 mg, 62 mol) and 4 Å molecular sieves in CH2Cl2 (2 mL) were stirred
at RT for 10 min. Then after cooling to 0 °C, trimethylsilyltriflate (4 L,
20 mol) was added and the reaction was monitored by TLC (cyclohexane/
A
mixture of
l
L-cysteine methyl
l
l
l
AcOEt 1:1). After 1 h stirring, no starting material remained. So the mixture
was neutralized with Et3N (0.5 mL), filtered through a small pad of Celite and
evaporated under vacuum. The crude oil obtained was purified by column
chromatography on silica gel (CH2Cl2/MeOH 99:1) to give 1e (25 mg, 79%) as
colourless oil. ½a D20
ꢁ
= ꢂ9 (c 1, CH2Cl2). 1H NMR (400 MHz, CDCl3): d 6.44 (d, 1H,
J = 7.4 Hz, NH), 5.36 (td, 1H, J = 7.2, 4.3 Hz, H-5), 5.30 (d, 1H, J = 2.0 Hz, H-1),
5.05–5.01 (m, 2H, H-2, H-3), 4.88 (td, 1H, J = 7.4, 5.0 Hz, CHCH2S), 4.30 (dd, 1H,
J = 12.0, 4.3 Hz, H-6), 4.35–4.32 (m, 1H, H-4), 4.18 (dd, 1H, J = 12.0, 7.2 Hz, H-
60), 3.77 (s, 3H, CO2CH3), 3.18 (dd, 1H, J = 14.1, 5.0 Hz, CH2S), 3.04 (dd, 1H,
J = 14.1, 5.0 Hz, CH2S), 2.14, 2.11, 2.08, 2.06, 2.04 (5s, 15H, COCH3). 13C NMR
(100 MHz, CDCl3): d 170.9, 170.6, 170.03, 169.99, 169.85, 169.8 (CO), 88.6 (C-
1), 81.8 (C-2), 79.8 (C-4), 76.4 (C-3), 69.1 (C-5), 62.5 (C-6), 52.8 (CO2CH3), 51.9
(CHCH2S), 33.2 (CHCH2S), 23.0 (NHCOCH3), 20.8, 20.7, 20.6 (COCH3). HRMS
(ESI): calcd for C20H29O12NSNa [M+Na]+ 530.1308, found 530.1401.
Acknowledgements
We are grateful to CNRS and ‘ministère de la recherche’ for the
financial support, to ‘Centre Regional des Mesures Physiques de
l’Ouest, Université de Rennes 1’ for the Mass spectra and the
‘Agence Universitaire de la Francophonie’ (AUF) for financial
supports through an Intra-European fellowship for D.D. We would