Ingold and DiLabio
239
ney, C.; Harrison, P. G. J. Chem. Soc. Perkin Trans. 2,
1982, 631. doi:10.1039/P2980000625.
minimum energy structure should be represented by B and
not by D, which is also in accordance with the conclusions
reached by Prokof’ev et al.6 on the basis of EPR spectral
evidence, vide supra.
The present calculations are in sufficiently good agree-
ment with experimental data that it is fairly safe to conclude
that we have been employing appropriate methodology to
study these kinds of dynamic processes and they therefore
provide additional support for our earlier conclusion1 that
the R3Sn group in R3SnOOꢁ radicals undergoes such a fast
1,2-shift that the two oxygen atoms are magnetically equiv-
alent on the EPR time scale.
(10) In this connection, it has recently been demonstrated that
oxygen-centered radical attack on alkyl and aryl borane sub-
strates does not occur by a traditional SH2 process.11 Instead,
it involves a nucleophilic attack of an oxygen lone pair on
the empty boron p orbital. The unpaired electron on the oxy-
gen is not directly involved, but the boron–ligand bond
aligned with the SOMO cleaves and the ligand leaves
promptly. The mechanism was described as a nucleophilic
homolytic substitution at boron.
(11) Carra, C.; Scaiano, J. C. Eur. J. Org. Chem. 2008, 2008 (26),
4454. doi:10.1002/ejoc.200800187.
(12) Prokof’ev, A. I.; Bubnov, N. N.; Solodnikov, S. P.; Kabach-
nik, M. I. Tetrahedron Lett. 1973, 14 (27), 2479. doi:10.
1016/S0040-4039(01)96183-0.
Acknowledgements
We thank Prof. A. G. Davies for sharing his extensive
knowledge and for his continued advice and encouragement
and Dr. Bun Chan (University of Sydney) for helpful discus-
sions. We also thank P. Boulanger (University of Alberta)
for computational resources.
(13) Calculations were performed using B314LYP15/6-311+G(d,p)
as implemented in ref. 16. For radicals containing Sn, we
used the averaged relativistic effective potentials of LaJohn
et al.17 with the accompanying basis set, which was used un-
contracted.
(14) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi:10.1063/1.
464913.
References
(15) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
doi:10.1103/PhysRevB.37.785.
(1) Ingold, K. U.; DiLabio, G. A. Can. J. Chem. 2010, 88 (11),
1053. doi:10.1139/V10-071.
(16) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G.
E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.;
Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyen-
gar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.;
Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.;
Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J.
B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.
E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Och-
terski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Sal-
vador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich,
S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.;
Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J.
V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Ste-
fanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi,
I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M.
W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Po-
ple, J. A. Gaussian 03, revision D.01; Gaussian, Inc.: Pitts-
burgh, PA, 2004.
(2) Howard, J. A.; Tait, J. C. J. Am. Chem. Soc. 1977, 99 (25),
8349. doi:10.1021/ja00467a053.
(3) Experimental 17O hfs have not been reported for R3PbOOꢁ.
Calculated values are given in ref. 1.
(4) For reviews of these and analogous reactions, see: (a) Bub-
nov, N. N.; Solodovnikov, S. P.; Prokof’ev, A. I.; Kabach-
nik, M. I. Russ. Chem. Rev. 1978, 47 (6), 549. doi:10.1070/
RC1978v047n06ABEH002238.; (b) Prokof’ev, A. I.; Proko-
f’eva, T. I.; Belostotskaya, I. S.; Burnov, N. N.; Solodnikov,
S. P.; Ershov, V. V.; Kabachnik, M. I. Tetrahedron 1979, 35
(20), 2471. doi:10.1016/S0040-4020(01)93765-2. For a re-
view of solvent viscosity effects on the rates of these fast
unimolecular reactions, see: (c) Rakhimov, R. R.; Prokof’ev,
A. I.; Lebedev, Ya. S. Russ. Chem. Rev. 1993, 62 (6), 509.
doi:10.1070/RC1993v062n06ABEH000030.
(5) Kukes, S. G.; Prokof’ev, A. I.; Bubnov, N. N.; Solodovni-
kov, S. P.; Korniets, E. D.; Kravtsov, D. N.; Kabachnik, M.
I. Dokl. Chem. 1976, 229, 519.
(6) Prokof’ev, A. I.; Prokof’eva, T. I.; Bubnov, N. N.; Solodov-
nikov, S. P.; Belostotskaya, I. S.; Ershov, V. V.; Kabachnik,
M. I. Dokl. Chem. 1978, 239, 165.
(7) Davies, A. G.; Hawari, J. A.-A. J. Organomet. Chem. 1983,
(17) LaJohn, L. A.; Christiansen, P. A.; Ross, R. B.; Atashroo, T.;
Ermler, W. C. J. Chem. Phys. 1987, 87 (5), 2812. doi:10.
1063/1.453069.
251, 53. doi:10.1016/0022-328X(83)80243-5.
(8) Similar results and conclusions have been reported for ad-
ducts of tri-substituted group 14 radicals with other 1,2-di-
carbonyl compounds.9
(18) It has been reported that ‘‘solvents capable of forming hydro-
gen bonds’’ retard the rate of reaction 2 for G = H.4a This is
to be expected because phenols containing intramolecular H
bonds are capable of forming bifurcated intra/intermolecular
H bonds,19 which reduces the rates of H-atom abstraction20
just as intermolecular H bonding reduces the rates of ab-
straction from simple phenols.21 Fortunately, the experiments
in question4a were done in heptane, which is neither an H-
bond donor nor acceptor, so the kinetic measurements should
be directly comparable with the computed dynamics.
(19) Litwinienko, G.; DiLabio, G. A.; Mulder, P.; Korth, H.-G.;
Ingold, K. U. J. Chem. Phys. A 2009, 113 (22), 6275.
doi:10.1021/jp900876q.
(9) See for example: (a) Alberti, A.; Hudson, A. Chem. Phys.
Lett. 1977, 48 (2), 331. doi:10.1016/0009-2614(77)80326-6.;
(b) Alberti, A.; Hudson, A. J. Chem. Soc., Perkin Trans. 2
1978, (10): 1098. doi:10.1039/p29780001098.; (c) Razuvaev,
G. A.; Tsarjapkin, V. A.; Gorbunova, L. V.; Cherkasov, V.
K.; Abakumov, G. A.; Klimov, E. S. J. Organomet. Chem.
1979, 174 (1), 47. doi:10.1016/S0022-328X(00)96161-8.; (d)
Davies, A. G.; Hawari, J. A.-A. J. Organomet. Chem. 1980,
201 (1), 221. doi:10.1016/S0022-328X(00)92578-6.; (e) Bar-
ker, P. J.; Davies, A. G.; Hawari, J. A.-A.; Tse, M.-W. J.
Chem. Soc. Perkin Trans. 2, 1980, 1488. doi:10.1039/
P29800001488.; (f) Davies, A. G.; Hawari, J. A.-A.; Gaff-
(20) de Heer, M. I.; Mulder, P.; Korth, H.-G.; Ingold, K. U.;
Published by NRC Research Press