Felix Rudolphi et al.
COMMUNICATIONS
[4] a) R. K. Thalji, K. A. Ahrendt, R. G. Bergman, J. A.
Ellman, J. Am. Chem. Soc. 2001, 123, 9692–9693;
b) C. H. Jun, C. W. Moon, J. B. Hong, S. G. Lim, K. Y.
Chung, Y. H. Kim, Chem. Eur. J. 2002, 8, 485–492;
c) D. A. Colby, R. G. Bergman, J. A. Ellman, Chem.
Rev. 2010, 110, 624–655.
[5] a) B. L. Small, M. Brookhart, A. M. A. Bennett, J. Am.
Chem. Soc. 1998, 120, 4049–4050; b) F. A. R. Kaul,
G. T. Puchta, G. D. Frey, E. Herdtweck, W. A. Herr-
mann, Organometallics 2007, 26, 988–999.
J. Zhang, P. Zhao, Org. Lett. 2010, 12, 992–995; e) M.
Zhang, J. Zhou, J. Kan, M. Wang, W. Su, M. Hong,
Chem. Commun. 2010, 46, 5455–5457.
[17] a) L. J. Gooßen, F. Rudolphi, C. Oppel, N. Rodrꢄguez,
Angew. Chem. 2008, 120, 3085–3088; Angew. Chem.
Int. Ed. 2008, 47, 3043–3045; b) M. Li, H. Ge, Org.
Lett. 2010, 12, 3464–3467; c) P. Fang, M. Li, H. Ge, J.
Am. Chem. Soc. 2010, 132, 11898–11899.
[18] R. Shang, Y. Fu, J. B. Li, S. L. Zhang, Q. X. Guo, L.
Liu, J. Am. Chem. Soc. 2009, 131, 5738–5739.
[6] a) H. Schiff, Justus Liebigs Ann. Chem. 1866, 140, 92–
137; b) R. W. Layer, Chem. Rev. 1963, 63, 489–510.
[7] a) G. E. P. Smith Jr, F. W. Bergstrom, J. Am. Chem.
Soc. 1934, 56, 2095–2098; b) R. L. Garner, L. Heller-
man, J. Am. Chem. Soc. 1946, 68, 823–825.
[19] a) D. K. Rayabarapu, J. A. Tunge, J. Am. Chem. Soc.
2005, 127, 13510–13511; b) J. A. Enquist Jr, B. M.
Stoltz, Nature 2008, 453, 1228–1231.
[20] For related catalytic reactions of carboxylic acids, see
a) L. J. Gooßen, N. Rodrꢄguez, K. Gooßen, Angew.
Chem. 2008, 120, 3144–3164; Angew. Chem. Int. Ed.
2008, 47, 3100–3120; b) L. J. Gooßen, J. Paetzold, L.
Winkel, Synlett 2002, 10, 1721–1723; c) L. Gooßen, A.
Dçhring, Adv. Synth. Catal. 2003, 345, 943–947.
[21] a) L. J. Gooßen, C. Linder, N. Rodrꢄguez, P. P. Lange,
A. Fromm, Chem. Commun. 2009, 7173–7175; b) J.
Cornella, C. Sanchez, D. Banawa, I. Larrosa, Chem.
Commun. 2009, 7176–7178; c) L. J. Gooßen, N. Rodrꢄ-
guez, C. Linder, P. P. Lange, A. Fromm, ChemCatChem
2010, 2, 430–442; d) L. J. Gooßen, P. P. Lange, N. Ro-
drꢄguez, C. Linder, Chem. Eur. J. 2010, 16, 3906–3909.
[22] Oxidative couplings proceed at lower temperatures, but
require stoichiometric amounts of oxidants and are re-
stricted to very few substrate classes. See for, example,
ref.[17c]
[23] For DFT calculations of decarboxylations, see for ex-
ample, a) K. Chuchev, J. J. BelBruno, THEOCHEM
2006, 807, 1–9; b) L. J. Gooßen, W. R. Thiel, N. Rodrꢄ-
guez, C. Linder, B. Melzer, Adv. Synth. Catal. 2007,
349, 2241–2246; c) J. Shi, X. Y. Huang, J. P. Wang, R.
Li, J. Phys. Chem. A 2010, 114, 6263–6272.
[24] a) H. v. Euler, H. Hasselquist, E. Eriksson, Justus Lie-
bigs Ann. Chem. 1952, 578, 188–194; b) M. F. Aly, R.
Grigg, Tetrahedron 1988, 44, 7271–7282; c) J. E. Bald-
win, R. M. Adlington, J. C. Bottaro, J. N. Kolhe,
M. W. D. Perry, A. U. Jain, Tetrahedron 1986, 42, 4223–
4234.
[8] K. C. Gulati, S. R. Seth, K. Venkataraman, Org. Synth.
1935, 15, 70–71.
[9] a) E. Haak, I. Bytschkov, S. Doye, Angew. Chem. 1999,
111, 3584–3586; Angew. Chem. Int. Ed. 1999, 38, 3389–
3391; b) M. Beller, J. Seayad, A. Tillack, H. Jiao,
Angew. Chem. 2004, 116, 3448–3479; Angew. Chem.
Int. Ed. 2004, 43, 3368–3398.
[10] Y. J. Park, E. A. Jo, C. H. Jun, Chem. Commun. 2005,
1185–1187.
[11] a) C. Zhou, R. C. Larock, J. Am. Chem. Soc. 2004, 126,
2302–2303; b) C. Zhou, R. C. Larock, J. Org. Chem.
2006, 71, 3551–3558; c) Y. C. Wong, K. Parthasarathy,
C. H. Cheng, Org. Lett. 2010, 12, 1736–1739.
[12] B. Gnanaprakasam, J. Zhang, D. Milstein, Angew.
Chem. 2010, 122, 1510–1513; Angew. Chem. Int. Ed.
2010, 49, 1468–1471.
[13] a) T. Ishiyama, T. Oh-e, N. Miyaura, A. Suzuki, Tetra-
hedron Lett. 1992, 33, 4465–4468; b) J. Zhu, H. Bien-
aymꢃ, Multicomponent Reactions, Wiley-VCH, Wein-
heim, 2005.
[14] For redox-neutral couplings, see, e.g.: a) L. J. Gooßen,
G. Deng, L. M. Levy, Science 2006, 313, 662–664;
b) L. J. Gooßen, N. Rodrꢄguez, B. Melzer, C. Linder, G.
Deng, L. M. Levy, J. Am. Chem. Soc. 2007, 129, 4824–
4833; c) J. M. Becht, C. Catala, C. L. Drian, A. Wagner,
Org. Lett. 2007, 9, 1781–1783; d) F. Bilodeau, M. C.
Brochu, N. Guimond, K. H. Thesen, P. Forgione, J.
Org. Chem. 2010, 75, 1550–1560; e) L. J. Gooßen, N.
Rodrꢄguez, P. P. Lange, C. Linder, Angew. Chem. 2010,
122, 1129–1132; Angew. Chem. Int. Ed. 2010, 49, 1111–
1114.
[25] The decarboxylation may also proceed at the stage of
the hemiaminal: M. C. Myers, A. R. Bharadwaj, B. C.
Milgram, K. A. Scheidt, J. Am. Chem. Soc. 2005, 127,
14675–14680.
[15] For oxidative couplings, see, e.g.: a) A. Voutchkova, A.
Coplin, N. E. Leadbeater, R. H. Crabtree, Chem.
Commun. 2008, 6312–6314; b) J. Cornella, P. Lu, I.
Larrosa, Org. Lett. 2009, 11, 5506–5509.
[16] a) A. G. Myers, D. Tanaka, M. R. Mannion, J. Am.
Chem. Soc. 2002, 124, 11250–11251; b) L. J. Gooßen, B.
Zimmermann, T. Knauber, Beilstein J. Org. Chem.
2010, 6, DOI 10.3762/bjoc.6.43; c) P. Hu, J. Kan, W. Su,
M. Hong, Org. Lett. 2009, 11, 2341–2344; d) Z. M. Sun,
[26] F. H. Westheimer, K. Taguchi, J. Org. Chem. 1971, 36,
1570–1572.
[27] Control experiments revealed that the aldimine does
not react with aryl bromides, excluding a reaction path-
way via carbopalladation of this protodecarboxylation
product. An alternative pathway via decarboxylative
cross-coupling of the a-oxocarboxylate followed by
imine condensation can be excluded on the basis that
a-oxocarboxylates did not decarboxylate at 1008C.
342
ꢀ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2011, 353, 337 – 342