LETTER
Synthesis of S-Pixyl Derivatives
2455
and a mass tag in one molecule can potentially be used for
orthogonal detection by mass spectrometry and optical
detection methods.3c
References
(1) (a) Gut, I. G. Hum. Mut. 2004, 23, 437. (b) Meng, Z.;
Simmons-Willis, T. A.; Limbach, P. A. Biomol. Eng. 2004,
21, 1. (c) Tang, K.; Fu, D.; Kotter, S.; Cotter, R. J.; Cantor,
C. J.; Koster, H. Nucleic Acids Res. 1995, 23, 3126.
(2) Aebersold, R.; Mann, M. Nature (London) 2003, 422, 198.
(3) (a) Shchepinov, M. S.; Chalk, R.; Southern, E. M. Nucleic
Acids Symp. Ser. 1999, 42, 107. (b) Shchepinov, M. S.;
Chalk, R.; Southern, E. M. Tetrahedron 2000, 56, 2713.
(c) Shchepinov, M. S.; Korshun, V. A.; Egeland, R. D.;
Southern, E. M. Tetrahedron Lett. 2000, 41, 4943.
(d) Shchepinov, M. S.; Korshun, V. A. Chem. Soc. Rev.
2003, 32, 170.
Initial MS analysis of S-pixyl 22 gave the desired molec-
ular ion (Figure 3). Further work on the fluorescent and
MS properties of 22 is currently ongoing and will be
reported in due course.
(4) Balgobin, N.; Chattopadhyaya, J. B. Chem. Scr. 1982, 19,
143.
(5) (a) Samanen, J. M.; Brandeis, E. J. Org. Chem. 1988, 53,
561. (b) Kiso, Y.; Kimura, T.; Yoshida, M.; Shimokura, M.;
Akaji, K.; Mimoto, T. J. Chem. Soc., Chem. Commun. 1989,
1511.
Figure 3
(6) (a) Coleman, M. P.; Boyd, M. K. J. Org. Chem. 2002, 67,
7641. (b) Bernad, P. L.; Khan, S.; Korshun, V.; Southern, E.
M.; Shchepinov, M. S. Chem. Commun. 2005, 3466.
(7) (a) Archer, S.; Miller, K. J.; Rej, R.; Periana, C.; Fricker, L.
J. Med. Chem. 1982, 25, 220. (b) Watanabe, M.; Date, M.;
Tsukazaki, M.; Furukawa, S. Chem. Pharm. Bull. 1989, 37,
36.
(8) (a) Brindle, I. D.; Doyle, P. P. Can. J. Chem. 1983, 61, 1869.
(b) Protiva, M.Šedivý, Z.; Holubek, J.; Svátek, E.;
Metyšová, J.; Bartošová, M. Coll. Czech. Chem. Commun.
1982, 47, 3134.
(9) (a) Org. Synth. Coll. Vol. II; Blatt, A. H., Ed.; Wiley: New
York, 1943, 580. (b) Katz, L.; Karger, L. S.; Schroeder, W.;
Cohen, M. S. J. Org. Chem. 1953, 18, 1380. (c) Bennett, O.
F.; Johnson, J.; Tramondozzi, J. Org. Prep. Proced. Int.
1974, 6, 287.
(10) (a) Newman, M. S.; Karnes, H. A. J. Org. Chem. 1966, 31,
3980. (b) Kaji, A.; Araki, Y.; Miyazaki, K. Bull. Chem. Soc.
Jpn. 1971, 44, 1393. (c) Decollo, T. V.; Lees, W. J. J. Org.
Chem. 2001, 66, 4244.
In conclusion, we have synthesised several substituted
thioxanthone derivatives via a regioselective Friedel–
Crafts acylation reaction in gram quantities. We have also
reported the preparation of a new pyrene S-pixyl 22 for
MS applications. (MA)LDI analysis of S-pixyls 18 and 19
confirm that the presence of electron donating groups on
the thioxanthyl backbone improves the sensitivity in the
positive mode of laser desorption ionisation. Further work
is ongoing and the synthesis of bifunctional trityl deriva-
tives will be reported in due course.
Table 1 Synthesis of Substituted Thioxanthen-9-ones
O
R4
R3
R2
R1
S
(11) (a) Lindley, J. Tetrahedron 1984, 40, 1433. (b) Kulkarni, N.
N.; Kulkarni, V. S.; Lele, S. R.; Hosangadi, B. D.
Tetrahedron 1988, 44, 5145. (c) Protiva, M.; Šindelář, K.;
Šediv, Z.; Holubek, J.; Bartošová, M. Collect. Czech. Chem.
Commun. 1981, 46, 1808. (d) Jílek, J.; Šindelář, K.;
Pomykáček, J.; Kmoníček, V.; Šedivý, Z.; Hrubantová, M.;
Holubek, J.; Svátek, E.; Ryska, M.; Koruna, I.; Valchář, M.;
Dlabač, A.; Metyšová, J.; Dlohožková, N.; Protiva, M.
Collect. Czech. Chem. Commun. 1989, 54, 3294.
(12) General Procedure for the Copper-Mediated Ullmann
Reaction, Selected Compounds 9a and 20.
Ketone R1
R2
R3
R4
H
Yield
(%)a
10
11
12
13
14
15
16
17
H
H
H
OMe
H
H
H
80–93
OMe 0b
H
OMe
H
H
68
OMe OMe
H
83–95
39c
35c
32
H
H
H
Me
H
H
H
To a solution of thiosalicylic acid (0.2 mol) in 300 mL of
DMF was added aryl halide (0.2 mol), K2CO3 (0.2 mol) and
Cu powder (0.2 equiv), the mixture was warmed to reflux.
After 16–24 h the mixture was cooled to r.t., filtered and
poured into 1 N HCl and then extracted with EtOAc (4 ×).
The combined organic phases were then washed with H2O
(4 ×), and dried over Na2SO4, filtered and concentrated in
vacuo. The product was dried under high vacuum and used
with out further purification (78–95%).
H
Me
H
(CH2)2CO2Me
H
OMe OMe
O(CH2)2CO2Et
H
60
a Isolated yields.
b Synthesis of 10, regioisomer 11 not obtained (AlCl3, CH2Cl2, r.t.).
c Obtained as a mixture, purified via recrystallisation.
Analytic data of 9b: 1H NMR (200 MHz, DMSO-d6):
d = 8.30–7.50 (d, J = 9.2 Hz, 1 H), 7.50–7.35 (dd, J = 9.6
Hz, 1 H), 7.30–7.18 (t, J = 7.5 Hz, 1 H), 7.15–7.00 (m, 3 H),
6.85–6.74 (d, J = 9.0 Hz, 1 H), 3.8 (s, 3 H). 13C NMR (400
MHz, DMSO-d6): d = 168.00, 160.99, 142.35, 134.16,
133.26, 131.79, 131.68, 128.51, 127.88, 125.59, 120.77,
115.98, 56.15. HRMS (ESI): m/z calcd for C14H12NaO3S
[M + Na+]: 283.0405; found: 283.0416.
Acknowledgment
We would like to thank Tim Claridge for assistance with NMR
spectra and Colin Sparrow for running all high accurate mass mea-
surements, CRL, Department of Chemistry, University of Oxford.
Synlett 2005, No. 16, 2453–2456 © Thieme Stuttgart · New York