10.1002/ejoc.201900752
European Journal of Organic Chemistry
COMMUNICATION
o
and 36. Subjecting these glycals to TMSOTf at -78 C provided
the 2-C-prenyl substituted 3-C-branched bicyclic acetals 35 and
37, respectively, as a 1:1 mixture of diastereomers. However, 1,5-
alkyl transposition of the p-methoxybenzoyl group in glycal
derivative 38 was again unsuccessful. Instead, this reaction
provided the C-disaccharide 39 as a single diastereomer (table 2,
entry 5).
The authors thank DST-SERB grant (File No. EMR/20l6/007816)
for financial support. B.U.R thank UGC-India for Senior Research
Fellowship.
Keywords: Carbohydrates • Deoxy-Glycals • Carbocation •
Rearrangement • Carbon-branched sugars
[1] R. R. Naredla, D. A. Klumpp, Chem. Rev. 2013, 113, 6905-
6948.
[2] G. A. Olah, J. Am. Chem. Soc., 1972, 94, 808–820
[3] F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry Part
B: Reactions and synthesis, 5th edition, Springer Science, New
York, USA, 2008, pp. 861-897.
[4] M. Miljkovic, Conformations and Chemistry of Oxocarbenium
Ion. In: Electrostatic and Stereoelectronic Effects in
Carbohydrate Chemistry, Springer, Boston, MA, 2014, pp. 87-
115.
[5] D. J. Vocadlo, G. J. Davies, Mechanistic insights into
glycosidase chemistry. Curr. Opin. Chem. Biol. 2008, 12, 539–
555.
[6] S. J. Danishefsky, M. T. Bilodeau, Angew. Chem. Int. Ed. Engl.
1996, 35, 1380-1419.
Conclusion
In conclusion, we have reported an unprecedented 1,5- and 1,6-
alkyl transposition reaction of 3-deoxy glycals. The methodology
provides access to the synthesis of various 2-C-branched
levoglycosan
derivatives
as
well
as
2,8-
dioxabicyclo[3.3.1]nonane systems. To the best of knowledge,
this is the first of its kind in the literature. The application of the
developed methodology in total synthesis of natural products20
and novel sugar derived scaffolds is in progress.
[7] (a) R. J. Ferrier, Top. Curr. Chem. 2001, 215, 153–175; (b) A.
M. Gómez, F. Lobo, C. Uriel, J. C. López, Eur. J. Org. Chem.
2013, 7221–7262; (c) M. Santhi, K. K. Balasubramanian, S.
Bhagavathy, Carbohydr. Res. 2009, 344, 521–525; (d) R. Roy,
P. Rajasekaran, A. Mallick, Y. D. Vankar, Eur. J. Org.
Chem. 2014, 5564-5573; (e) A. A. Ansari, Y. D. Vankar, J. Org.
Chem. 2013, 78, 9383-9395; (f) P. Nagaraj, N. G. Ramesh,
Tetrahedron 2011, 67, 9322-9328; (g) P. Nagaraj, N. G.
Ramesh, Tetrahedron 2010, 66, 599-604.
[8] (a) R. J. Ferrier, N. Prasad, J. Chem. Soc. C., Organic 1969, 581-
586; (b) A. L. J. Byerley, A. M. Kenwright, P. G. Steel,
Tetrahedron Lett. 1996, 37, 9093-9096; (c) A. H. Franz, Y. Wei,
V. V. Samoshin, P. H. Gross, J. Org. Chem. 2002, 67, 7662-
7669.
[9] K. M. Engstrom, M. R. Mendoza, M. Navarro-Villalobos, D. Y.
Gin, Angew. Chem. Int. Ed. 2001, 40, 1128-1130.
[10] A. L. J. Byerley, A. M. Kenwright, C. W. Lehmann, J. A. H.
MacBride, P. G. Steel, J. Org. Chem. 1998, 63, 193-194.
[11] G. M. Reddy, B. U. Rao, P. R. Sridhar, J. Org. Chem. 2016, 81,
2782–2793.
Experimental Section
General method for the 1,6-alkyl migration (exemplified for
compounds 5a and 5b): A stirred solution of compound 4 (700 mg, 1.9
mmol) in dry dichloromethane (20 mL) under inert atmosphere was added
4 Å MS and the suspension was cooled to -78 oC. TMSOTf (34 µL, 0.19
mmol) was added dropwise and continued stirring at the same temperature.
After 15 min the reaction was quenched by the addition of Et3N (~60 µL)
and allowed it to come to room temperature. The reaction mixture was
filtered through a small pad of Celite and the filter cake was washed with
dichloromethane (20 mL). Evaporation of the solvent under reduced
pressure followed by column chromatography of the obtained crude
product provided the mixture of 2-C-branced levoglucosan derivatives 5a
and 5b (1:1) (666 mg) as a colourless gum in 95% yield. Rf: 0.75 (20%
EtOAc/hexanes). 5a: IR (neat): 2934, 2892, 2835, 1610, 1509 cm-1. 1H
NMR (400 MHz, CDCl3): δ 7.27 (d, 2H, J = 8.4 Hz), 7.08 (d, 2H, J = 8.8
Hz), 6.88 (d, 2H, J = 8.8 Hz), 6.83 (d, 2H, J = 8.4 Hz), 5.26 (s, 1H), 4.56-
4.58 (m, 1H), 4.50-4.54 (m, 2H), 3.82 (s, 3H), 3.81 (s, 3H), 3.77-3.79 (m,
1H), 3.71-3.73 (m, 1H), 3.35-3.36 (m, 1H), 2.57 (dd, 1H, J = 8.0 Hz, J =
13.6 Hz), 2.39 (dd, 1H, J = 6.8 Hz, J = 13.6 Hz), 2.19-2.27 (m, 1H), 1.74-
1.79 (m, 1H), 1.44-1.49 (m, 1H). 13C NMR (100 MHz, CDCl3): δ 159.19,
157.90, 131.07, 130.23, 129.90, 129.22, 113.79, 113.75, 103.36, 74.58,
72.58, 70.07, 66.41, 55.25, 55.21, 39.12, 37.30, 27.64. HRMS (ESI) calcd
[12] Crystal data for compound 8 (C21H21O5Br), M.Wt = 433.29,
orthorhombic, space group P212121
a = 6.3899 Å, b =
16.3327 Å, c = 19.0663 Å, V = 1989.84(15) Å3, Z = 4, MoKα
radiation (λ = 0.71073), T = 297.68 K; R1 = 0.0349, wR2 =
0.0780 [I >=2σ (I)]; R1 = 0.0490, wR2 = 0.0841 (all data). The
CIF file for the crystal data of compound 8 is available from the
[ ]25
-50.4 (c 0.63,
D
for C22H26O5+Na+ 393.1672, found 393.1672. 5b:
훼
CHCl3); IR (neat): 2956, 2920, 2853, 1608, 1510 cm-1. 1H NMR (400 MHz,
CDCl3): δ 7.33 (d, 2H, J = 8.8 Hz), 7.14 (d, 2H, J = 8.8 Hz), 6.91 (d, 2H, J
= 8.8 Hz), 6.84 (d, 2H, J = 8.8 Hz), 5.37 (s, 1H), 4.61-4.64 (m, 2H), 4.54
(d, 1H, J = 12.0 Hz), 3.83 (s, 3H), 3.80 (s, 3H), 3.75-3.79 (m, 2H), 3.32-
3.33 (m, 1H), 2.94 (dd, 1H, J = 7.2 Hz, J = 13.6 Hz), 2.87 (dd, 1H, J = 9.2
Hz, J = 14.0 Hz), 1.90 (dd, 1H, J = 7.6 Hz, J = 15.6 Hz), 1.78-1.84 (m, 1H),
1.67 (d, 1H, J = 14.8 Hz). 13C NMR (100 MHz, CDCl3): δ 159.18, 157.84,
132.76, 130.46, 130.16, 129.05, 113.83, 113.74, 104.09, 75.33, 73.17,
70.12, 66.03, 55.28, 55.24, 40.48, 36.40, 23.17. HRMS (ESI) calcd for
C22H26O5+Na+ 393.1672, found 393.1671.
Cambridge
Crystallographic
Data
Centre
via
[13] H. Nakamura, K. Arata, T. Wakamatsu, Y. Ban, M. Shibasaki,
Chem. Pharm. Bull. 1990, 38, 2435-2411.
[14] L. Alberch, G. Cheng, S. K. Seo, X. Li, F. P. Boulineau, A. Wei,
J. Org. Chem. 2011, 76, 2532–2547.
[15] B. M. Trost, Y. H. Rhee, Org. Lett. 2004, 6, 4311-4313.
[16] B. Wang, D. C. Xiong, X. S. Ye, Org. Lett. 2015, 17,
5698−5701.
[17] G. Karageorgis, M. Dow, A. Aimon, S. Warriner, A. Nelson,
Angew. Chem. Int. Ed. 2015, 54, 13538 –13544.
[18] Intermediacy of 5d is supported by mass spectral data (see
supporting information)
Acknowledgements
[19] G. M. Reddy, P. R. Sridhar, Eur. J. Org. Chem. 2014, 2014,
1496−1504.
[20] For the use of 2-C-branched sugars in total synthesis: (a) Y.
Sridhar, P. Srihari, Org. Biomol. Chem. 2014, 12, 2950–2959.
This article is protected by copyright. All rights reserved.