Macromolecules
ARTICLE
backbone signals are identical for P-1 and sa P-1/P-2 at, e.g.,
70 °C (Figure 11a and top trace of Figure 11b) proving that this
effect is not related to complex formation but to conformational
changes of PMeOxa. Conclusively, at temperatures above LCST
a globular core of collapsed PNIPAAm chains is surrounded by
PMeOxa chains tethered by the β-CD/Ada complex formed
from the corresponding polymer end group functionalities
(scheme in Figure 11). This structure is similar to that of
PNIPAAm-graft-PAlkylOxa copolymers reported in previous
studies.31,42
analysis. Dr. Karin Sahre is thanked for MALDI studies. We
would further like to thank Dr. Maricica Munteanu for synthesis
of mono(6-azido-6-desoxy)-β-cyclodextrin.
’ REFERENCES
(1) Kollisch, H. S.; Barner-Kowollik, C.; Ritter, H. Chem. Commun.
2009, 1097–1099.
(2) Cesteros, L. C.; Gonzalez-Teresa, R.; Katime, I. Eur. Polym. J.
2009, 45, 674–679.
(3) Nozaki, T.; Maeda, Y.; Kitano, H. J. Polym. Sci., Polym. Chem.
1997, 35, 1535–1541.
’ CONCLUSIONS
(4) van de Manakker, F.; Vermonden, T.; van Nostrum, C. F.;
Hennink, W. E. Biomacromolecules 2009, 10, 3157–3175.
(5) Li, J.; Loh, X. J. Adv. Drug Delivery Rev. 2008, 60, 1000–1017.
(6) Li, J. S.; Xiao, H. N.; Li, J. H.; Zhong, Y. P. Int. J. Pharm. 2004,
278, 329–342.
In this contribution, we described the combination of two water-
soluble polymers to a defined thermoresponsive diblock copolymer
through the noncovalent interaction of β-CD and adamantane. For
that we developed a new synthetic strategy for the preparation of an
adamantane end-functionalized poly(2-methyl-2-oxazoline) and a
β-CD end-functionalized poly(N-isopropyl-acrylamide). The ap-
proach presented here includes the controlled polymerization of
NIPAAm and 2-methyl-2-oxazoline with initiators that are functio-
nalized with functional moieties able to form strong inclusion
complexes. In this way, well-defined polymers were obtained,
which undergo self-assembly to form the supramolecular diblock
structure poly(2-methyl-2-oxazoline-block-N-isopropylacrylamide).
The self-organized block formation could be verified undoubt-
edly by means of detailed NMR analysis.
Thus, we demonstrated for the first time the preparation of a
well-defined diblock copolymer formed through self-assembly of
cyclodextrin and adamantyl end-functionalized polymers. The
described diblock assembly represents a double-hydrophilic
system that is switchable to a hydrophilicꢀhydrophobic config-
uration by adjusting temperature. As detected by NMR spec-
troscopy, this thermal process leads to reversible polymer
aggregation where a globular core of collapsed PNIPAAm chains
is surrounded by PMeOxa chains, thus, representing a second
self-assembly process which is thermally switchable. Therefore,
this strategy leads to new reversibly thermoresponsive noncova-
lent diblock copolymers which can be fine-tuned in their
aggregation behavior with potential use as drug delivery system.
(7) Xin, J. Y.; Guo, Z. Z.; Chen, X. Y.; Jiang, W. F.; Li, J. S.; Li, M. L.
Int. J. Pharm. 2010, 386, 221–228.
(8) Li, L.; Guo, X. H.; Wang, J.; Liu, P.; Prud’homme, R. K.; May,
B. L.; Lincoln, S. F. Macromolecules 2008, 41, 8677–8681.
(9) Kretschmann, O.; Choi, S. W.; Miyauchi, M.; Tomatsu, I.;
Harada, A.; Ritter, H. Angew. Chem., Int. Ed. 2006, 45, 4361–4365.
(10) Kretschmann, O.; Steffens, C.; Ritter, H. Angew. Chem., Int. Ed.
2007, 46, 2708–2711.
(11) Charlot, A.; Auzely-Velty, R. Macromolecules 2007, 40,
9555–9563.
(12) Guerrouache, M.; Millot, M. C.; Carbonnier, B. Macromol.
Rapid Commun. 2009, 30, 109–113.
(13) Gonzalez-Campo, A.; Hsu, S. H.; Puig, L.; Huskens, J.;
Reinhoudt, D. N.; Velders, A. H. J. Am. Chem. Soc. 2010, 132,
11434–11436.
(14) Choi, S.; Munteanu, M.; Ritter, H. J. Polym. Res. 2009, 16,
389–394.
(15) Trellenkamp, T.; Ritter, H. Macromolecules 2010, 43, 5538–
5543.
(16) Nielsen, T. T.; Wintgens, V.; Amiel, C.; Wimmer, R.; Larsen,
K. L. Biomacromolecules 2010, 11, 1710–1715.
(17) Lehn, J. M. Polym. Int. 2002, 51, 825–839.
(18) De Greef, T. F. A.; Smulders, M. M. J.; Wolffs, M.; Schenning,
A.; Sijbesma, R. P.; Meijer, E. W. Chem. Rev. 2009, 109, 5687–5754.
(19) Cordier, P.; Tournilhac, F.; Soulie-Ziakovic, C.; Leibler, L.
Nature 2008, 451, 977–980.
(20) Folmer, B. J. B.; Sijbesma, R. P.; Versteegen, R. M.; van der Rijt,
J. A. J.; Meijer, E. W. Adv. Mater. 2000, 12, 874–878.
(21) Feldman, K. E.; Kade, M. J.; Meijer, E. W.; Hawker, C. J.;
Kramer, E. J. Macromolecules 2010, 43, 5121–5127.
(22) Tang, C. B.; Lennon, E. M.; Fredrickson, G. H.; Kramer, E. J.;
Hawker, C. J. Science 2008, 322, 429–432.
(23) Ott, C.; Kranenburg, J. M.; Guerrero-Sanchez, C.; Hoeppener,
S.; Wouters, D.; Schubert, U. S. Macromolecules 2009, 42, 2177–2183.
(24) Chiper, M.; Meier, M. A. R.; Wouters, D.; Hoeppener, S.;
Fustin, C. A.; Gohy, J. F.; Schubert, U. S. Macromolecules 2008,
41, 2771–2777.
(25) Chiper, M.; Fournier, D.; Hoogenboom, R.; Schubert, U. S.
Macromol. Rapid Commun. 2008, 29, 1640–1647.
(26) Ozyurek, Z.; Voit, B.; Krahl, F.; Arndt, K. F. e-Polym. 2010, 13.
(27) Chang, C.; Wei, H.; Quan, C. Y.; Li, Y. Y.; Liu, J.; Wang, Z. C.;
Cheng, S. X.; Zhang, X. Z.; Zhuo, R. X. J. Polym. Sci., Polym. Chem. 2008,
46, 3048–3057.
’ ASSOCIATED CONTENT
S
Supporting Information. Synthetic procedure of the
b
alkyne 2-bromoisobutyryl propargylester and the monoazide
β-CD, mass spectrometry results (EI-MS) of the adamantyl
functionalized initiator (I-1), experimental details and results
of the MALDI-TOF analysis of Ada-PMeOxa (P-1), proton
NMR results in DMSO of initiator I-1 and of polymer P-1 and
the DLS diagrams of P-1, P-2, and sa P-1/P-2 in DMAc are
provided. This material is available free of charge via the Internet
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: voit@ipfdd.de.
(28) Wei, H.; Zhang, X. Z.; Cheng, C.; Cheng, S. X.; Zhuo, R. X.
Biomaterials 2007, 28, 99–107.
(29) Rekharsky, M. V.; Inoue, Y. Chem. Rev. 1998, 98, 1875–1917.
(30) David, G.; Alupei, V.; Simionescu, B. C.; Dincer, S.; Piskin, E.
Eur. Polym. J. 2003, 39, 1209–1213.
(31) Rueda, J.; Zschoche, S.; Komber, H.; Schmaljohann, D.; Voit, B.
Macromolecules 2005, 38, 7330–7336.
’ ACKNOWLEDGMENT
The authors thank Mr. Andreas Korwitz for assistance in
NMR measurements, Dr. Albena Lederer and Ms. Petra Treppe
for GPC measurements, and Ms. Liane H€aussler for DSC
3258
dx.doi.org/10.1021/ma200048a |Macromolecules 2011, 44, 3250–3259