Chemistry of Materials
COMMUNICATION
111, 17947–17951. (g) Anthony, J. E. Angew. Chem., Int. Ed. 2008,
47, 452–483. (h) Matsuo, Y.; Sato, Y.; Niinomi, T.; Soga, I.; Tanaka, H.;
Nakamura, E. J. Am. Chem. Soc. 2009, 131, 16048–16050.
Phys. Lett. 2007, 90, 182117. (d) Takeya, J.; Yamagishi, M.; Tominari, Y.;
Hirahara, R.; Nakazawa, Y.; Nishikawa, T.; Kawase, T.; Shimoda, T.;
Ogawa, S. Appl. Phys. Lett. 2007, 90, 102120.
(2) (a) Anthony, J. E.; Brooks, J. S.; Eaton, D. L.; Parkin, S. R. J. Am.
Chem. Soc. 2001, 123, 9482–9483. (b) Payne, M. M.; Parkin, S. R.;
Anthony, J. E.; Kuo, C.-C.; Jackson, T. N. J. Am. Chem. Soc. 2005,
127, 4986–4987. (c) Reese, C.; Roberts, M. E.; Parkin, S. R.; Bao, Z. Adv.
Mater. 2009, 21, 3678–3681. (d) Tang, M. L.; Oh, J. H.; Reichardt, A. D.;
Bao, Z. J. Am. Chem. Soc. 2009, 131, 3733–3740. (e) Schmidt, R.; Oh,
J. H.; Sun, Y.-S.; Deppisch, M.; Krause, A.-M.; Radacki, K.; Braunsch-
weig, H.; K€onemann, M.; Erk, P.; Bao, Z.; W€urthner, F. J. Am. Chem. Soc.
2009, 131, 6215–6228. (f) Gs€anger, M.; Oh, J. H.; K€onemann, M.;
H€offken, H. W.; Krause, A.-M.; Bao, Z.; W€urthner, F. Angew. Chem., Int.
Ed. 2010, 49, 740–743. (g) Prasanthkumar, S.; Saeki, A.; Seki, S.;
Ajayaghosh, A. J. Am. Chem. Soc. 2010, 132, 8866–8867. (h) Prasanth-
kumar, S.; Gopal, A.; Ajayaghosh, A. J. Am. Chem. Soc. 2010,
132, 13206–13207.
(14) (a) Facchetti, A.; Mushrush, M.; Katz, H. E.; Marks, T. J. Adv.
Mater. 2003, 15, 33–38. (b) Facchetti, A.; Yoon, M. H.; Stern, C. L.;
Katz, H. E.; Marks, T. J. Angew. Chem., Int. Ed. 2003, 42, 3900–3903. (c)
Facchetti, A.; Letizia, J.; Yoon, M. H.; Mushrush, M.; Katz, H. E.; Marks,
T. J. Chem. Mater. 2004, 16, 4715–4727.
(15) In the case of FPPT and PPT devices, the two-dimensional
crystalline thin films were occasionally observed on the vapor-treated
OTS, leading to the high mobilities, whereas the 3D polycrystalline thin-
film growth was observed more frequently on most other substrates,
resulting in low mobilities.
(3) (a) Patrick, C. R.; Prosser, G. S. Nature 1960, 187, 1021. (b)
Williams, J. H. Acc. Chem. Res. 1993, 26, 593–598. (c) Coates, G. W.;
Dunn, A. R.; Henling, L. M.; Ziller, J. W.; Lobkovsky, E. B.; Grubbs, R. H.
J. Am. Chem. Soc. 1998, 120, 3641–3649. (d) Dai, C.; Nguyen, P.;
Marder, T. B.; Scott, A. J.; Clegg, W.; Viney, C. Chem. Commun.
1999, 2493–2494. (e) Collings, J. C.; Roscoe, K. P.; Thomas, R. L.;
Batsanov, A. S.; Stimson, L. M.; Howard, J. A. K.; Clark, S. J.; Marder,
T. B. New J. Chem. 2001, 25, 1410–1417. (f) Collings, J. C.; Roscoe,
K. P.; Robins, E. G.; Batsanov, A. S.; Stimson, L. M.; Howard, J. A. K.;
Clark, S. J.; Marder, T. B. New J. Chem. 2002, 26, 1740–1746. (g) Watt,
S. W.; Dai, C.; Scott, A. J.; Burke, J. M.; Thomas, R. L.; Collings, J. C.;
Viney, C.; Marder, T. B. Angew. Chem., Int. Ed. 2004, 43, 3061–3063. (h)
Fasina, T. M.; Collings, J. C.; Burke, J. M.; Ward, R. M.; Albesa-Jovꢁe, D.;
Porrꢂes, L.; Beeby, A.; Howard, J. A. K.; Scott, A. J.; Clegg, W.; Watt,
S. W.; Viney, C.; Marder, T. B. J. Mater. Chem. 2005, 15, 690–697. (i)
Babu, S. S.; Praveen, V. K.; Prasanthkumar, S.; Ajayaghosh, A. Chem.—
Eur. J. 2008, 14, 9577–9584. (j) Li, C.-Z.; Matsuo, Y.; Niinomi, T.; Sato,
Y.; Nakamura, E. Chem. Commun. 2010, 46, 8582–8584.
(4) Thalladi, V. R.; Weiss, H.-C.; Bl€aser, D.; Boese, R.; Nangia, A.;
Desiraju, G. R. J. Am. Chem. Soc. 1998, 120, 8702–8710.
(5) Battaglia, M. R.; Buckingham, A. D.; Williams, J. H. Chem. Phys.
Lett. 1981, 78, 421–423.
(6) Avlasevich, Y.; M€ullen, K. Chem. Commun. 2006, 4440–4442.
(7) M€uller, A. M.; Avlasevich, Y. S.; Schoeller, W. W.; M€ullen, K.;
Bardeen, C. J. J. Am. Chem. Soc. 2007, 129, 14240–14250.
(8) Lafrance, M.; Shore, D.; Fagnou, K. Org. Lett. 2006,
8, 5097–5100.
(9) Williams, J. H.; Cockcroft, J. K.; Fitch, A. N. Angew. Chem., Int.
Ed. Engl. 1992, 31, 1655–1657.
(10) (a) Renak, M. L.; Bartholomew, G. P.; Wang, S.; Ricatto, P. J.;
Lachicotte, R. J.; Bazan, G. C. J. Am. Chem. Soc. 1999, 121, 7787–7799.
(b) Weiss, H.-C.; Boese, R.; Smith, H. L.; Haley, M. M. Chem. Commun.
1997, 2403–2404.
(11) (a) Seki, S.; Yoshida, Y.; Tagawa, S.; Asai, K.; Ishigure, K.;
Furukawa, K.; Fujikiand, M.; Matsumoto, N. Philos. Mag. B 1999,
79, 1631–1645. (b) Grozema, F. C.; Siebbeles, L. D. A.; Warman,
J. M.; Seki, S.; Tagawa, S.; Scherf, U. Adv. Mater. 2002, 14, 228–231. (c)
Saeki, A.; Seki, S.; Sunagawa, T.; Ushida, K.; Tagawa, S. Philos. Mag.
2006, 86, 1261–1276. (d) Yamamoto, Y.; Fukushima, T.; Jin, W.;
Kosaka, A.; Hara, T.; Nakamura, T.; Saeki, A.; Seki, S.; Tagawa, S.;
Aida, T. Adv. Mater. 2006, 18, 1297–1300. (e) Saeki, A.; Seki, S.;
Takenobu, T.; Iwasa, Y.; Tagawa, S. Adv. Mater. 2008, 20, 920–923.
(12) φ and ∑μ denote photocarrier generation yield (quantum
efficiency) and sum of mobilities for negative and positive carriers,
respectively.
(13) (a) Podzorov, V.; Menard, E.; Borissov, A.; Kiryukhin, V.;
Rogers, J. A.; Gershenson, M. E. Phys. Rev. Lett. 2004, 93, 086602. (b)
Sundar, V. C.; Zaumseil, J.; Podzorov, V.; Menard, E.; Willett, R. L.;
Someya, T.; Gershenson, M. E.; Rogers, J. A. Science 2004,
303, 1644–1646. (c) Yamagishi, M.; Takeya, J.; Tominari, Y.; Nakazawa,
Y.; Kuroda, T.; Ikehata, S.; Uno, M.; Nishikawa, T.; Kawase, T. Appl.
1649
dx.doi.org/10.1021/cm200356y |Chem. Mater. 2011, 23, 1646–1649