(f) B. Westermann and C. Neuhaus, Angew. Chem., Int. Ed., 2005,
44, 4077; (g) P. H.-Y. Cheong, H. Zhang, R. Thayumanavan,
F. Tanaka, K. N. Houk and C. F. Barbas III, Org. Lett., 2006, 8,
811; (h) N. S. Chowdari, D. B. Ramachary and C. F. Barbas III,
Synlett, 2003, 1906; (i) W. Zhuang, S. Saaby and K. A. Jørgensen,
Angew. Chem., Int. Ed., 2004, 43, 4476; (j) D. A. Yalalov,
S. B. Tsogoeva, T. E. Shubina, I. M. Martynova and T. Clark, Angew.
Chem., Int. Ed., 2008, 47, 6624; (k) J. M. Janey, Y. Hsiao and
J. D. Armstrong III, J. Org. Chem., 2006, 71, 390; (l) I. Ibrahem,
H. Sunden, P. Dziedzic, R. Rios and A. Cordova, Adv. Synth. Catal.,
2007, 349, 1868; (m) M. Amedjkouh and M. Brandberg, Chem.
Commun., 2008, 3043.
3 (a) S. Mitsumori, H. Zhang, P. H.-Y. Cheong, K. N. Houk,
F. Tanaka and C. F. Barbas III, J. Am. Chem. Soc., 2006, 128,
1040; (b) H. Zhang, M. Mifsud, F. Tanaka and C. F. Barbas III,
J. Am. Chem. Soc., 2006, 128, 9630; (c) H. Zhang, S. Mitsumori,
N. Utsumi, M. Imai, N. Garcia-Delgado, M. Mifsud,
K. Albertshofer, P. H.-Y. Cheong, K. N. Houk, F. Tanaka and
C. F. Barbas III, J. Am. Chem. Soc., 2008, 130, 875; (d) A. Cordova
and C. F. Barbas III, Tetrahedron Lett., 2002, 43, 7749; (e) T. Kano,
Y. Yamaguchi, O. Tokuda and K. Maruoka, J. Am. Chem. Soc.,
2005, 127, 16408; (f) T. Kano, Y. Hato, A. Yamamoto and
K. Maruoka, Tetrahedron, 2008, 64, 1197; (g) B. T. Hahn,
R. Frohlich, K. Harms and F. Glorius, Angew. Chem., Int. Ed.,
2008, 47, 9985; (h) M. Pouliquen, J. Blanchet, M.-C. Lasne and
J. Rouden, Org. Lett., 2008, 10, 1029; (i) I. Ibrahem and
A. Cordova, Chem. Commun., 2006, 1760; (j) H. Zhang,
Y. M. Chuan, Z. Y. Li and Y. G. Peng, Adv. Synth. Catal., 2009,
351, 2288.
4 (a) D. Enders and M. Vrettou, Synthesis, 2006, 2155; (b) D. Enders,
C. Grondal and M. Vrettou, Synthesis, 2006, 3597; (c) J. W. Yang,
M. Stadler and B. List, Nat. Protoc., 2007, 2, 1937; (d) J. W. Yang,
M. Stadler and B. List, Angew. Chem., Int. Ed., 2007, 46, 609;
(e) J. W. Yang, C. Chandler, M. Stadler, D. Kampen and B. List,
Nature, 2008, 452, 453; (f) J. Vesely, R. Rios, I. Ibrahem and
A. Cordova, Tetrahedron Lett., 2007, 48, 421; (g) P. Dziedzic,
J. Vesely and A. Cordova, Tetrahedron Lett., 2008, 49, 6631;
(h) N. Utsumi, S. Kitagaki and C. F. Barbas III, Org. Lett., 2008,
10, 3405; (i) N. S. Chowdari, M. Ahmad, K. Albertshofer,
F. Tanaka and C. F. Barbas III, Org. Lett., 2006, 8, 2839;
(j) B. List, J. Am. Chem. Soc., 2000, 122, 9336; (k) W. Notz,
S. Watanabe, N. S. Chowdari, G. Zhong, J. M. Betancort,
F. Tanaka and C. F. Barbas III, Adv. Synth. Catal., 2004, 346,
1131; (l) B. List, P. Pojarliev, W. T. Biller and H. J. Martin, J. Am.
Chem. Soc., 2002, 124, 827; (m) D. Enders, C. Grondal, M. Vrettou
and G. Raabe, Angew. Chem., Int. Ed., 2005, 44, 4079;
(n) A. Cordova, Chem.–Eur. J., 2004, 10, 1987; (o) I. Ibrahem,
W. Zou, M. Engqvist, Y. Xu and A. Cordova, Chem.–Eur. J., 2005,
11, 7024; (p) A. Cordova, Synlett, 2003, 1651; (q) W.-W. Liao,
I. Ibrahem and A. Cordova, Chem. Commun., 2006, 674;
(r) Y. Hayashi, W. Tsuboi, I. Ashimine, T. Urushima, M. Shoji
and K. Sakai, Angew. Chem., Int. Ed., 2003, 42, 3677;
(s) Y. Hayashi, T. Urushima, S. Aratake, T. Okano and K. Obi,
Org. Lett., 2008, 10, 21.
5 (a) T. Kano, Y. Yamaguchi and K. Maruoka, Angew. Chem., Int.
Ed., 2009, 48, 1838; (b) T. Kano, Y. Yamaguchi and K. Maruoka,
Chem.–Eur. J., 2009, 15, 6678; (c) C. Gianelli, L. Sambri,
A. Carlone, G. Bartoli and P. Melchiorre, Angew. Chem., Int. Ed.,
2008, 47, 8700; (d) P. Galzerano, D. Agostino, G. Bencivenni,
L. Sambri, G. Bartoli and P. Melchiorre, Chem.–Eur. J., 2010, 16,
6069; (e) L. Cheng, X. Han, H. Huang, M. W. Wong and Y. Lu,
Chem. Commun., 2007, 4143; (f) L. Cheng, X. Wu and Y. Lu, Org.
Biomol. Chem., 2007, 5, 1018; (g) E. Gomez-Bengoa, M. Maestro,
A. Mielgo, I. Otazo, C. Palomo and I. Velilla, Chem.–Eur. J., 2010,
16, 5333; (h) S. S. V. Ramasastry, H. Zhang, F. Tanaka and
C. F. Barbas III, J. Am. Chem. Soc., 2007, 129, 288; (i) H. Zhang,
S. S. V. Ramasastry, F. Tanaka and C. F. Barbas III, Adv. Synth.
Catal., 2008, 350, 791; (j) Q.-X. Guo, H. Liu, C. Guo, S.-W. Luo,
Y. Gu and L.-Z. Gong, J. Am. Chem. Soc., 2007, 129, 3790;
(k) C.-J. Wang, X.-Q. Dong, Z.-H. Zhang, Z.-Y. Xue and
H.-L. Teng, J. Am. Chem. Soc., 2008, 130, 8606.
Scheme 2 Proposed transition state model of 1c-catalyzed anti-
Mannich reaction.
anti-Mannich products with high yields (81–95%), good
diastereoselectivity (90 : 10–96 : 4 dr), and excellent enantio-
selectivity (98%–>99% ee) at 0 1C under conventional
organic synthetic operations (Table 2, entries 1–7, 12–16).
Linear aldehydes gave high yields and excellent ee (Table 2,
entries 8–10). Even hindered 3-methylbutanal reacted
smoothly to afford aminoaldehyde 5k with good enantio-
selectivity (Table 2, entry 11). Interestingly, N-CO2Et imine
also gave excellent results (95% yield, 95 : 5 dr, and >99% ee)
(Table 2, entry 17). Regrettably, 1c could not catalyze the reac-
tion between isovaleraldehyde and cyclohexanecarboxaldehyde
N-Cbz imine, or that between acetone and anisaldehyde
N-Boc imine.
The absolute configuration of N-Boc-protected 5c was
determined to be (1S, 2R) by comparison of the HPLC
retention times with the data reported in the literature.5a,b
To account for the stereochemical outcome, a transition state
model is proposed and shown in Scheme 2. The bulky group
(–CH2OTBDPS) should effectively shield the re-face of an
enamine double bond, and make the si-face available for
attack to give the observed major enantiomer. Both thiourea
protons in the catalyst are believed to bind to the imine
nitrogen through hydrogen bonding interactions and may
serve to activate the imine substrate effectively.
In conclusion, we have identified an efficient catalytic system
for the direct anti-Mannich reaction of unmodified aldehydes
with preformed N-Boc and N-Cbz imines. Only 5 mol%
catalyst loading was enough to give the corresponding products
in excellent yields (up to 95%), diastereoselectivities (up to
96 : 4 dr) and enantioselectivities (up to >99% ee). Further
applications of the present catalysts in other asymmetric trans-
formations are ongoing in our laboratory.
This work was supported by the Natural Science Foun-
dation of China (NSFC 20872120) and the Municipal Science
Foundation of Chongqing City (CSTC, 2009BB5110).
Notes and references
1 Selected reviews see: (a) R. G. Arrayas and J. C. Carretero, Chem.
Soc. Rev., 2009, 38, 1940; (b) J. M. M. Verkade, L. J. C. van Hemert,
P. J. L. M. Quaedflieg and F. P. J. T. Rutjes, Chem. Soc. Rev., 2008,
37, 29; (c) S. Mukherjee, J. W. Yang, S. Hoffmann and B. List,
Chem. Rev., 2007, 107, 5471; (d) A. Ting and S. E. Schaus, Eur. J.
Org. Chem., 2007, 5797; (e) M. M. B. Marques, Angew. Chem., Int.
Ed., 2006, 45, 348.
2 (a) A. Cordova, W. Notz, G. Zhong, J. M. Betancort and C. F. Barbas
III, J. Am. Chem. Soc., 2002, 124, 1842; (b) A. Cordova, S. Watanabe,
F. Tanaka, W. Notz and C. F. Barbas III, J. Am. Chem. Soc., 2002,
124, 1866; (c) W. Notz, F. Tanaka, S. Watanabe, N. S. Chowdari,
J. M. Turner, R. Thayumanavan and C. F. Barbas III, J. Org. Chem.,
2003, 68, 9624; (d) S. Watanabe, A. Cordova, F. Tanaka and
C. F. Barbas III, Org. Lett., 2002, 4, 4519; (e) N. S. Chowdari,
J. T. Suri and C. F. Barbas III, Org. Lett., 2004, 6, 2507;
6 C. Wang, C. Yu, C. L. Liu and Y. G. Peng, Tetrahedron Lett., 2009,
50, 2363.
c
3262 Chem. Commun., 2011, 47, 3260–3262
This journal is The Royal Society of Chemistry 2011