1440
S.W. Hunt et al. / Journal of Organometallic Chemistry 696 (2011) 1432e1440
[11] A.K. Das, E. Bulak, B. Sarkar, F. Lissner, T. Schleid, M. Niemeyer, J. Fiedler,
W. Kaim, Organometallics 27 (2008) 218.
furnish 1,1-Os3(CO)10(dppq) in quantitative yield. The ground-state
energy difference between the kinetic and thermodynamic forms of
Os3(CO)10(dppq) has been evaluated by DFT calculations, and the
computed energy difference is in concert with the experimental
data. The redox properties of the free ligand and the decacarbonyl
products were investigated by cyclic voltammetry, and the LUMO in
all three compounds was found to be localized on the quinoxaline
platform, as verified by DFT calculations. Future studies will probe
the electrochemical behavior of different Os3(CO)10(P‑P) clusters
that contain a redox-active PeP auxiliary, one whose potential is
tunable as a function of the ancillary substituents and heterocyclic
architecture.
[12] J.N. Nicholls, M.D. Vargas, Inorg. Synth. 26 (1989) 289.
[13] S.R. Drake, P.A. Loveday, Inorg. Synth. 28 (1990) 230.
[14] W.G. Kofron, L.M. Baclawski, J. Org. Chem. 41 (1976) 1879.
[15] D.F. Shriver, The Manipulation of Air-Sensitive Compounds. McGraw-Hill,
New York, 1969.
[16] We have arbitrarily assigned the shielded portion of quinoxaline 1H spin
system as belonging to the AA0 hydrogens. The JAA coupling constant was
0
computed to be 0.8 Hz.
[17] B.K. Carpenter, Determination of Organic Reaction Mechanisms. Wiley-
Interscience, New York, 1984.
[18] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Appli-
cations, second ed. Wiley, New York, 2001.
[19] APEX2 Version 2.14. Bruker AXS Inc, Madison, WI, 2007.
[20] G.M. Sheldrick, Acta Cryst. A64 (2008) 112.
[21] A.L. Spek, J. Appl. Cryst. 36 (2003) 7.
[22] Bruker SADABS. Bruker AXS Inc., Madison, WI, 2007.
[23] A.G. Orpen, Dalton Trans. (1980) 2509.
Acknowledgment
[24] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato,
X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro,
M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi,
J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi,
M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken,
C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin,
R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma,
V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich,
A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian
09, Revision A.02. Gaussian, Inc., Wallingford, CT, 2009.
Financial support from the Robert A. Welch Foundation (Grant
B-1093-MGR) is greatly appreciated, and X. Wang acknowledges
support by the U.S. Department of Energy, Office of Science, under
Contract No. DE-AC05-00OR22725 managed by UT Battelle, LLC.
NSF support of the NMR and computational facilities at UNT
through grants CHE-0840518 and CHE-0741936 is acknowledged.
We also wish to thank Prof. Michael B. Hall (TAMU) for providing us
a copy of his JIMP2 program, which was used to prepare the
geometry-optimized structures reported here, and Dr. David A.
Hrovat (Center for Advanced Scientific Computing and Modeling,
UNT) for his assistance and guidance with computational aspects
for this work.
[25] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
[26] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
[27] M.F. Cain, S.C. Reynolds, D.S. Glueck, J.A. James, A.L. Rheingold, ACS National
Meeting, Boston, MA, 2010, INOR-561.
[28] For a report on the synthesis and coordination chemistry of the phosphine
oxide based on dppq, see: E.I. Matrosov, Z.A. Starikova, A.A. Khodak,
E.E. Nifant’ev Zh. Neorg. Khim. 48 (2003) 2008.
Appendix A. Supporting information
[29] T.L. Gilchrist, Heterocyclic Chemistry, third ed. Addison Wesley Longman,
Essex, UK, 1997.
[30] (a) E.R. Corey, L.F. Dahl, Inorg. Chem. 1 (1962) 521;
(b) M.R. Churchill, B.G. DeBoer, Inorg. Chem. 16 (1977) 878.
[31] (a) J.A. Clucas, R.H. Dawson, P.A. Dolby, M.M. Harding, K. Pearson, A.K. Smith,
J. Organomet. Chem. 311 (1986) 153;
CCDC 730322, 730323, 730320, and 730321 contain the
supplementary crystallographic data for the ligand dppq and the
triosmium clusters 2b, 2c, and 3, respectively. These data can be
obtained free of charge from The Cambridge Crystallographic Data
(b) W.H. Watson, B. Poola, M.G. Richmond, J. Chem. Crystallogr. 36 (2006) 123;
(c) V. Nesterov, B. Poola, X. Wang, M.G. Richmond, J. Organomet. Chem. 692
(2007) 1806;
(d) K.A. Azam, M.B. Hursthouse, S.E. Kabir, K.M. Abdul Malik, M.A. Mottalib,
J. Chem. Crystallogr. 29 (1999) 813.
References
[32] S. Kandala, L. Yang, C.F. Campana, V. Nesterov, X. Wang, M.G. Richmond,
Polyhedron 29 (2010) 2814.
[1] (a) A.J. Deeming, S. Donovan-Mtunzi, S.E. Kabir, J. Organomet. Chem. 276
(1984) C65;
[33] P.E. Garrou, Chem. Rev. 81 (1981) 229.
(b) A.J. Deeming, S.E. Kabir, J. Organomet. Chem. 340 (1988) 359;
(c) A.J. Deeming, S. Donovan-Mtunzi, K.I. Hardcastle, S.E. Kabir, K. Henrick,
M. McPartlin, J. Chem. Soc., Dalton Trans. (1988) 579;
(d) S.E. Kabir, A. Miah, L. Nesa, K. Uddin, K.I. Hardcastle, E. Rosenberg,
A.J. Deeming, J. Organomet. Chem. 492 (1995) 41;
(e) N. Begum, U.K. Das, M. Hassan, G. Hogarth, S.E. Kabir, E. Nordlander,
M.A. Rahman, D.A. Tocher, Organometallics 26 (2007) 6462;
(f) S.-H. Huang, J.M. Keith, M.B. Hall, M.G. Richmond, Organometallics 29
(2010) 4041.
[34] The
DE and DH (at 298 K) values for the equilibrium between 2b and 2c are
computed as ꢀ3.3 kcal/mol and ꢀ3.2 kcal/mol, respectively.
[35] (a) B. Poola, C.J. Carrano, M.G. Richmond, Organometallics 27 (2008) 3018;
(b) S. Kandala, C. Hammons, W.H. Watson, X. Wang, M.G. Richmond, Dalton
Trans. 39 (2010) 1620.
[36] D.M.P. Mingos, D.J. Wales, Introduction to Cluster Chemistry. Prentice Hall,
Englewood Cliffs, NJ, 1990.
[37] (a) M.R. Churchill, F.J. Hollander, R.A. Lashewycz, G.A. Pearson, J.R. Shapley,
J. Am. Chem. Soc. 103 (1981) 2430;
[2] W.H. Watson, G. Wu, M.G. Richmond, Organometallics 24 (2005) 5431.
[3] W.H. Watson, G. Wu, M.G. Richmond, Organometallics 25 (2006) 930.
[4] W.H. Watson, B. Poola, M.G. Richmond, J. Organomet. Chem. 691 (2006) 4676.
[5] W.H. Watson, B. Poola, M.G. Richmond, Polyhedron 26 (2007) 3585.
[6] For a related report that describes the bridge-to-chelate isomerization of
a thiophosphine at a triosmium cluster, see: R. Persson, M. Monari, R. Gobetto,
A. Russo, S. Aime, M.J. Calhorda, E. Nordlander Organometallics 20 (2001) 4150.
[7] X. Zhang, S. Kandala, L. Yang, W.H. Watson, X. Wang, D.A. Hrovat, W.T. Borden,
M.G. Richmond, Organometallics 30, (2011), in press.
(b) M.R. Churchill, F.J. Hollander, Inorg. Chem. 20 (1981) 4124.
[38] The angular perturbation induced by the hydride on the mutually cis C(3)O(3)
and P(1) ligands may be contrasted with the average angle of 92.9ꢂ found for
the four other equatorial groups [C(1)eOs(1)eOs(3), C(4)eOs(2)eOs(3), C(8)e
Os(3)eOs(2), and C(9)eOs(3)eOs(1)] in 3.
[39] (a) S.B. Colbran, P.T. Irele, B.F.G. Johnson, F.J. Lahoz, J. Lewis, P.R. Raithby,
Dalton Trans. (1989) 2023;
(b) G. Chen, M. Deng, C.K. Lee, W.K. Leong, Organometallics 21 (2002) 1227;
(c) S.E. Kabir, M.A. Miah, N.C. Sarker, G.M.G. Hussain, K.I. Hardcastle,
E. Nordlander, E. Rosenberg, Organometallics 24 (2005) 3315.
[40] Electrochemical reversibility and electron stoichiometry were determined via
the usual methods, see P.H. Rieger, Electrochemistry. Chapman and Hall, New
York, 1994.
[8] F.A. Cotton, Inorg. Chem. 5 (1966) 1083.
[9] T. Imamoto, K. Sugita, K. Yoshida, J. Am. Chem. Soc. 127 (2005) 11934.
[10] For reports of asymmetric hydrogenation and hydroformylation using chiral
QuinoxP and QuinoxP-related ligands, see: (a) T. Imamoto, T. Itoh, Y. Yamanoi,
R. Narui, K. Yoshida, Tetrahedron: Asymmetry 17 (2006) 560;
(b) T. Imamoto, A. Kumada, H. Yoshida, Chem. Lett. 36 (2007) 500.
(c) T. Imamoto, M. Nishimura, A. Koide, K. Yoshida, J. Org. Chem. 72 (2007) 7413;
(d) A.T. Axtell, J. Klosin, G.T. Whiteker, C.J. Cobley, M.E. Fox, M. Jackson,
K.A. Abboud, Organometallics 28 (2009) 2993;
[41] (a) A.M. Bond, P.A. Dawson, B.M. Peake, P.H. Rieger, B.H. Robinson, J. Simpson,
Inorg. Chem. 18 (1979) 1413;
(b) M. Arewgoda, P.H. Rieger, B.H. Robinson, J. Simpson, S.J. Visco, J. Am. Chem.
Soc. 104 (1982) 5633;
(c) M.G. Richmond, J.K. Kochi, Inorg. Chem. 25 (1986) 656;
(d) A.J. Downard, B.H. Robinson, J. Simpson, Organometallics 5 (1986) 1132.
(e)M.E. Fox, M. Jackson, I.C. Lennon, J. Klosin, K.A. Kbboud, J. Org. Chem. 73 (2008)
775.