Journal of the American Chemical Society
ARTICLE
’ ASSOCIATED CONTENT
’ CONCLUSION
In summary, we have developed an intramolecular oxidative
CꢀN bond-forming reaction of N-substituted 2-amidobiphenyls
for the synthesis of carbazoles under mild conditions. Surpris-
ingly, it was observed that the cyclization took place readily under
both Cu-catalyzed and metal-free conditions, although product
yields were generally lower in the latter case. While bis-
(trifluoroacetoxy)iodobenzene alone can be used as an oxidant
for the corresponding carbazole synthesis, a combined use of
copper(II) triflate and phenyliodonium diacetate offered a more
diverse range of products with higher efficiency. A series of
mechanistic studies including kinetic isotope effects, reaction rate
profile, and radical inhibition experiments led us to propose that
the employed copper species catalyzes the activation of hyperva-
lent iodine(III) oxidants, leading to more facile CꢀN bond
formation. Considering its excellent reaction efficiency, wide
substrate scope, and very mild reaction conditions, the present
intramolecular oxidative CꢀN bond formation will be an attrac-
tive route to the practical synthesis of carbazoles and other
related nitrogen-containing heterocycles. Detailed mechanistic
studies as well as extension of the present protocol to an
intermolecular version are now underway.
S
Supporting Information. Detailed experimental proce-
b
dures and characterization of new compounds, including 1H and
13C NMR spectra. This material is available free of charge via the
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
This research was supported by the Korea Research Founda-
tion (KRF-2008-C00024, Star Faculty Program) and MIRC
(NRF-2010-0001957).
’ REFERENCES
(1) (a) M€uller, P.; Fruit, C. Chem. Rev. 2003, 103, 2905. (b) Dauban,
P.; Dodd, R. H. Synlett 2003, 1571. (c) Fiori, K. W.; Du Bois, J. J. Am.
Chem. Soc. 2007, 129, 562. (d) Davies, H. M. L.; Manning, J. R. Nature
2008, 451, 417. (e) Thu, H.-Y.; Yu, W.-Y.; Che, C.-M. J. Am. Chem. Soc.
2006, 128, 9048. (f) Li, Z.; Capretto, D. A.; Rahaman, R.; He, C. Angew.
Chem., Int. Ed. 2007, 46, 5184.
(2) For selected recent examples of oxidative amination, see:(a)
Brice, J. L.; Harang, J. E.; Timokhin, V. I.; Anastasi, N. R.; Stahl, S. S.
J. Am. Chem. Soc. 2005, 127, 2868. (b) Inamoto, K.; Saito, T.; Katsuno,
M.; Sakamoto, T.; Hiroya, K. Org. Lett. 2007, 9, 2931. (c) Fraunhoffer,
K. J.; White, M. C. J. Am. Chem. Soc. 2007, 129, 7274. (d) Reed, S. A.;
White, M. C. J. Am. Chem. Soc. 2008, 130, 3316. (e) Liu, G.; Yin, G.; Wu,
L. Angew. Chem., Int. Ed. 2008, 47, 4733.
(3) (a) Lee, J. M.; Ahn, D.-S.; Jung, D. Y.; Lee, J.; Do, Y.; Kim, S. K.;
Chang, S. J. Am. Chem. Soc. 2006, 128, 12954. (b) Cho, S. H.; Kim, J. Y.;
Lee, S. Y.; Chang, S. Angew. Chem., Int. Ed. 2009, 48, 9127. (c) Kim, J. Y.;
Cho, S. H.; Joseph, J.; Chang, S. Angew. Chem., Int. Ed. 2010, 49, 9899.
(4) (a) Tsang, W. C. P.; Zheng, N.; Buchwald, S. L. J. Am. Chem. Soc.
2005, 127, 14560. (b) Tsang, W. C. P.; Munday, R. H.; Brasche, G.;
Zheng, N.; Buchwald, S. L. J. Org. Chem. 2008, 73, 7603. (c) Li, B.-J.;
Tian, S.-L.; Fang, Z.; Shi, Z.-J. Angew. Chem., Int. Ed. 2008, 47, 1115.
(5) Jordan-Hore, J. A.; Johansson, C. C. C.; Gulias, M.; Beck, E. M.;
Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 16184.
’ EXPERIMENTAL SECTION
Representative Procedure for the Copper-Catalyzed Car-
bazole Synthesis (Table 4, Entry 1, Compound 2b). To an
oven-dried 10 mL round-bottom flask, equipped with a magnetic stir bar,
were added 2-benzenesulfonamidobiphenyl (61.9 mg, 0.2 mmol), Cu-
(OTf)2 (3.6 mg, 5 mol %), and CF3COOH (46 μL, 0.6 mmol, 3.0 equiv)
in 1,2-dichloroethane (1.0 mL). A solution of PhI(OAc)2 (96.6 mg, 0.3
mmol) in 1,2-dichloroethane (1.0 mL) was slowly added over 5 min.
After the reaction mixture was stirred for 10 min at 50 °C, the crude
mixture was filtered through a plug of Celite and then washed with
EtOAc (20 mL). The crude residue was purified by flash column
chromatography on silica gel to afford 9-benzenesulfonylcarbazole in
90% yield (55.3 mg): mp 121ꢀ123 °C; 1H NMR (400 MHz, CDCl3) δ
8.32 (d, J = 8.5 Hz, 2H), 7.88 (d, J = 7.8 Hz, 2H), 7.80 (m, 2H), 7.47 (m,
2H), 7.40 (m, 1H), 7.34 (t, J = 7.4 Hz, 2H), 7.27 (t, J = 8.1 Hz, 2H); 13
C
NMR (100 MHz, CDCl3) δ 138.3, 137.9, 133.7, 129.0, 127.4, 126.42,
126.39, 123.9, 120.0, 115.1; IR (film) 3060, 1600, 1443, 1370, 1175, 978,
752 cmꢀ1; HRMS (EIþ) m/z calcd for C18H13NO2S [M]þ 307.0667,
found 307.0667.
(6) (a) Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 14058. (b)
Mei, T.-S.; Wang, X.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 10806.
(7) (a) Mu~niz, K. J. Am. Chem. Soc. 2007, 129, 14542. (b) Mu~niz, K.;
H€ovelmann, C. H.; Streuff, J. J. Am. Chem. Soc. 2008, 130, 763. (c)
Rosewall, C. F.; Sibbald, P. A.; Liskin, D. V.; Michael, F. E. J. Am. Chem.
Soc. 2009, 131, 9488. (d) Sibbald, P. A.; Rosewall, C. F.; Swartz, R. D.;
Michael, F. E. J. Am. Chem. Soc. 2009, 131, 15945.
(8) For selected examples of reductive elimination of
Cꢀheteroatom bonds from plausible Pd(IV) intermediates, see:(a)
Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (b) Whitfield,
S. R.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 15142. (c) Dick, A. R.;
Remy, M. S.; Kampf, J. W.; Sanford, M. S. Organometallics 2007,
27, 1365. (d) Furuya, T.; Ritter, T. J. Am. Chem. Soc. 2008, 130,
10060. (e) Fu, Y.; Li, Z.; Liang, S.; Guo, Q.-X.; Liu, L. Organometallics
2008, 27, 3736.
(9) (a) Chen, X.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006,
128, 6790. (b) Park, E. J.; Kim, S. H.; Chang, S. J. Am. Chem. Soc. 2008,
130, 17268. (c) Powell, D. A. J. Org. Chem. 2008, 73, 7822. (d) Ueda, S.;
Nagasawa, H. J. Org. Chem. 2009, 74, 4272. (e) Gao, Y.; Wang, G.; Chen,
L.; Xu, P.; Zhao, Y.; Zhou, Y.; Han, L.-B. J. Am. Chem. Soc. 2009,
131, 7956. (f) King, A. E.; Brunold, T. C.; Stahl, S. S. J. Am. Chem. Soc.
2009, 131, 5044. (g) Wei, Y.; Zhao, H.; Kan, J.; Su, W.; Hong, M. J. Am.
Chem. Soc. 2010, 132, 2522. (h) Chu, L.; Qing, F.-L. Org. Lett. 2010,
12, 5060.
Representative Procedure for the Metal-Free Carbazole
Synthesis (Table 5, Entry 3, Compound 2i). To an oven-dried
10 mL round-bottom flask, equipped with a magnetic stir bar, were
added 2-benzenesulfonylamido-5-chlorobiphenyl (68.5 mg, 0.2 mmol)
and CF3COOH (46 μL, 0.6 mmol, 3.0 equiv) in 1,2-dichloroethane
(1.0 mL). A solution of PhI(OTFA)2 (129 mg, 0.3 mmol) in 1,2-
dichloroethane (1.0 mL) was slowly added over 5 min. After the reaction
mixture was stirred for 10 min at 50 °C, the crude mixture was filtered
through a plug of Celite and then washed with EtOAc (20 mL). The
crude residue was purified by flash column chromatography on silica gel
to afford the 9-benzenesulfonyl-3-chlorocarbazole in 87% yield (59.5
mg): mp 146ꢀ148 °C; 1H NMR (400 MHz, CDCl3) δ 8.31 (d, J = 8.5
Hz, 1H), 8.26 (d, J = 8.6 Hz, 1H), 7.85ꢀ7.83 (m, 2H), 7.80ꢀ7.77 (m,
2H), 7.54ꢀ7.42 (m, 3H), 7.38ꢀ7.30 (m, 3H); 13C NMR (100 MHz,
CDCl3) δ 138.8, 137.5, 136.6, 134.0, 129.8, 129.1, 128.1, 127.8, 127.4,
126.4, 125.3, 124.2, 120.2, 119.9, 116.2, 115.2; IR (film) 2919, 1599,
1443, 1410, 1372, 1177, 1091, 925, 730 cmꢀ1; HRMS (EIþ) m/z calcd
for C18H12ClNO2S [M]þ 341.0277, found 341.0277.
6004
dx.doi.org/10.1021/ja111652v |J. Am. Chem. Soc. 2011, 133, 5996–6005