The Journal of Organic Chemistry
NOTE
Ethyl (3-Phenyl)propyl Ethylphosphonate (31). Treatment
of alcohol 30 (0.50 g, 3.68 mmol) under standard conditions in toluene
at reflux gave phosphonate 31 (469 mg, 50%) as a colorless oil after
purification by chromatography with EtOAc in hexane: 1H NMR (300
MHz) δ 7.30-7.23 (m, 2H), 7.19-7.16 (m, 3H), 4.14-4.00 (m, 4H),
2.71 (t, J = 7.2 Hz, 2H), 2.03-1.92 (m, 2H), 1.81-1.66 (m, 2H), 1.31 (t,
J = 6.6 Hz, 3H), 1.16 (dt, JHP = 19.8, J = 7.8 Hz, 3H); 13C NMR
(75 MHz) δ 140.7, 128.1 (4C), 125.6, 64.1 (d, JCP = 6.5 Hz), 61.1 (d,
JCP = 6.6 Hz), 31.8 (d, JCP = 6.2 Hz), 31.4, 18.3 (d, JCP = 141.5 Hz), 16.1 (d,
JCP = 5.9 Hz), 6.3 (d, JCP = 6.8 Hz); 31P NMR (CDCl3) δ 33.7; HRMS
(EIþ, m/z) calcd for C13H21O3P (Mþ) 256.1229, found 256.1220.
Ethyl 3-Phenylpropyl Phosphite (33). Treatment of alcohol 30
(1.0 g, 7.35 mmol) under standard conditions in THF at reflux gave
phosphonate 31 (530 mg, 28%) and phosphite 33 (478 mg, 27%) as a
colorless oil after purification by column chromatography (25% to 50%
EtOAc in hexane). For compound 33: 1H NMR (300, MHz) δ 7.16 (d,
J = 6.9 Hz, 2H), 7.09-7.03 (m, 3H), 6.69 (d, JHP = 693 Hz, 1H), 4.08-
3.91 (m, 4H), 2.61 (t, J = 7.5 Hz, 2H), 1.94-1.84 (m, 2H), 1.24 (t, J =
6.9 Hz, 3H); 13C NMR (75, MHz) δ 140.3, 128.0 (2C), 127.9 (2C),
(8) Neighbors, J. D.; Salnikova, M. S.; Wiemer, D. F. Tetrahedron
Lett. 2005, 46, 1321–1324.
(9) Neighbors, J. D.; Buller, M. J.; Boss, K. D.; Wiemer, D. F. J. Nat.
Prod. 2008, 71, 1949–1952.
(10) (a) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863–927.
(b) Bhattacharya, A. K.; Thyagarajan, G. Chem. Rev. 1981, 81, 415–430.
(11) A number of other approaches to phosphonates and phospho-
nic acids are known.(a) For phosphonate synthesis from o-(hydroxymethy1)
phenols, see: B€ohmer, V.; Vogt, W.; Chafaa, S.; Meullemeestre, J.;
Schwing, M.-J.; Vierling, F. Helv. Chim. Acta 1993, 76, 139–149. (b) For
phosphonate synthesis via Pd-couplings, see: Lavꢀen, G.; Stawinski, J.
Synlett 2009, 225–228. (c) For synthesis of phosphonic acids from
alcohols, see: Coudray, L.; Montchamp, J.-L. Eur. J. Org. Chem.
2008, 4101–4103. (d) Bravo-Altamirano, K.; Montchamp, J.-L. Tetra-
hedron Lett. 2007, 48, 5755–5759.
(12) (a) Ulrich, N. C.; Kodet, J. G.; Mente, N. R.; Kuder, C. H.;
Beutler, J. A.; Hohl, R. J.; Wiemer, D. F. Bioorg. Med. Chem. 2010,
18, 1676–1683.(b) Kodet, J. G. Ph.D. Thesis, University of Iowa,
December 2010.
(13) (a) Hammond, G. B.; Calogeropoulou, T.; Wiemer, D. F.
Tetrahedron Lett. 1986, 27, 4265–4268. (b) Calogeropoulou, T.; Ham-
mond, G. B.; Wiemer, D. F. J. Org. Chem. 1987, 52, 4185–4190. (c)
Baker, T. J.; Wiemer, D. F. J. Org. Chem. 1998, 63, 2613–2618.
(14) (a) Lee, K.; Wiemer, D. F. J. Org. Chem. 1991, 56, 5556–5560.
(b) Du, Y.; Wiemer, D. F. J. Org. Chem. 2002, 67, 5701–5708.
(15) Chen, X.; Wiemer, A. J.; Hohl, R. J.; Wiemer, D. F. J. Org. Chem.
2002, 67, 9331–9339.
125.7, 64.3 (d, JCP = 5.6 Hz), 61.4 (d, JCP = 5.8 Hz), 31.5 (d, JCP
=
6.4 Hz), 31.1, 15.9 (d, JCP = 6.1 Hz); 31P NMR δ 7.6; HRMS (EIþ, m/z)
calcd for C11H17O3P (Mþ) 228.0915, found 228.0923.
’ ASSOCIATED CONTENT
(16) Lau, C. K.; Dufresne, C.; Belanger, P. C.; Pietre, S.; Scheigetz, J.
J. Org. Chem. 1986, 51, 3038–3043.
(17) Kim, S.; Chung, K. N.; Yang, S. J. Org. Chem. 1987, 52
3917–3919.
(18) Guindon, Y.; Grenette, R.; Fortin, R.; Rokach, J. J. Org. Chem.
1983, 48, 1357–1359.
(19) (a) Gauthier, J. Y.; Bourdon, F.; Young, R. N. Tetrahedron Lett.
1986, 27, 15–18. (b) Clarembeau, M.; Krief, A. Tetrahedron Lett. 1984,
25, 3625–3628.
(20) For an acid-catalyzed approach to a benzylic phosphonate
through a quinoid type of intermediate, see: Mugrage, B.; Diefenbacher,
C.; Somers, J.; Parker, D. T.; Parker, T. Tetrahedron Lett. 2000,
41, 2047–2050.
(21) Plabst, M.; Stock, N.; Bein, T. Cryst. Growth Des. 2009, 9
5049–5060.
(22) Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements;
Butterworth-Heinemann: Oxford, 1997; pp 1206, 1209.
(23) Katz, H. E.; Bent, S. F.; Wilson, W. L.; Schilling, M. L.; Ungashe,
S. B. J. Am. Chem. Soc. 1994, 116, 6631–6635.
S
Supporting Information. General experimental proce-
b
dures and the 1H and 13C NMR spectra for compounds 20, 25,
31, and 33. This material is available free of charge via the
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: david-wiemer@uiowa.edu.
’ ACKNOWLEDGMENT
Financial support in the form of a University of Iowa Presi-
dential Fellowship (to R.M.R.) and from the Roy J. Carver
Charitable Trust and the National Institutes of Health (DA02-
6573) is gratefully acknowledged.
(24) Irngartinger, H; Stadler, B. Eur. J. Org. Chem. 1998, 605–626.
(25) Zinc iodide cleavage of methyl ethers has been reported: (a)
Hanessian, S.; Guindon, Y. Tetrahedron Lett. 1980, 21, 2305–2308. (b)
Benedetti, M. O. V.; Monteagudo, E. S.; Burton, G. J. Chem. Res., Synop.
1990, 248–249.
’ REFERENCES
(1) (a) Beutler, J. A.; Shoemaker, R. H.; Johnson, T.; Boyd, M. R.
J. Nat. Prod. 1998, 61, 1509–1512. (b) Beutler, J. A.; Jato, J.; Cragg,
G. M.; Boyd, M. R. Nat. Prod. Lett. 2000, 14, 399–404. (c) Yoder, B. J.;
Cao, S.; Norris, A.; Miller, J. S.; Ratovoson, F.; Razafitsalama, J.;
Andriantsiferana, R.; Rasamison, V. E.; Kingston, D. G. I. J. Nat. Prod.
2007, 70, 342–346. (d) Thoison, O.; Hnawia, E.; Gueritte-Voegelein, F.;
Sevenet, T. Phytochemistry 1992, 1439–1442.
(2) Treadwell, E. M.; Cermak, S. C.; Wiemer, D. F. J. Org. Chem.
1999, 64, 8718–8723.
(3) Neighbors, J. D.; Beutler, J. A.; Wiemer, D. F. J. Org. Chem. 2005,
70, 925–931.
(4) Mente, N. R.; Wiemer, A. J.; Neighbors, J. D.; Beutler, J. A.; Hohl,
R. J.; Wiemer, D. F. Bioorg. Med. Chem. Lett. 2007, 17, 911–915.
(5) Mente, N. R.; Neighbors, J. D.; Wiemer, D. F. J. Org. Chem. 2008,
73, 7963–7970.
(6) (a) Topczewski, J. J.; Neighbors, J. D.; Wiemer, D. F. J. Org.
Chem. 2009, 74, 6965–6972. (b) Topczewski, J. J.; Kodet, J. G.; Wiemer,
D. F. J. Org. Chem. 2011, 76, 909–919.
(26) Khartulyari, A. S.; Kapur, M.; Maier, M. E. Org. Lett. 2006,
8, 5833–5836.
(27) Ramos, A. M.; Beckers, E. H.; Offermans, T.; Meskers, S. C. J.;
Janssen, R. A. J. Phys. Chem. A 2004, 108, 8201–8211.
(28) Cadogan, J. I. G.; Cameron-Wood, M.; Mackie, R. K.; Searle,
R. J. G. J. Chem. Soc. 1965, 4831–4837.
(29) Chaplais, G.; Le Bideau, J.; Leclercq, D.; Vioux, A. Chem. Mater.
2003, 15, 1950–1956.
(30) Lee, H. J.; Lee, Y. R.; Kim, S. H. Helv. Chim. Acta 2009,
92, 1404–1412.
(31) Takaya, Y.; Terashima, K.; Ito, J.; He, Y.; Tateoka, M.;
Yamaguchi, N.; Niwa, M. Tetrahedron 2005, 61, 10285–10290.
(32) (a) Eummer, J. T.; Gibbs, B. S.; Zahn, T. J.; Sebolt-Leopold,
J. S.; Gibbs, R. A. Bioorg. Med. Chem. 1999, 7, 241–250. (b) Cermak,
D. M.; Du, Y.; Wiemer, D. F. J. Org. Chem. 1999, 64, 388–393.
(33) Blau, N. F.; Wang, T. T. S.; Buess, C. M. J. Chem. Eng. Data
1970, 15, 206–208.
(7) Belofsky, G.; French, A. N.; Wallace, D. R.; Dodson, S. L. J. Nat.
Prod. 2004, 67, 26–30.
2878
dx.doi.org/10.1021/jo200137k |J. Org. Chem. 2011, 76, 2875–2879