Organometallics
ARTICLE
L. A. J. Am. Chem. Soc. 2001, 123, 4155–4160. (d) Rodríguez, D.; Pꢀerez
Sestelo, J.; Sarandeses, L. A. J. Org. Chem. 2003, 68, 2518–2520. (e)
Pena, M. A.; Pꢀerez Sestelo, J.; Sarandeses, L. A. Synthesis 2003, 780–784.
(f) Rodríguez, D.; Pꢀerez Sestelo, J.; Sarandeses, L. A. J. Org. Chem. 2004,
69, 8136–8139. (g) Riveiros, R.; Rodríguez, D.; Pꢀerez Sestelo, J.;
Sarandeses, L. A. Org. Lett. 2006, 8, 1403–1406. (h) Riveiros, R.; Pꢀerez
Sestelo, J.; Sarandeses, L. A. Synthesis 2007, 3595–3598. (i) Caeiro, J.;
Pꢀerez Sestelo, J.; Sarandeses, L. A. Chem.ÀEur. J. 2008, 14, 741–746. (j)
Riveiros, R.; Saya, L.; Pꢀerez Sestelo, J.; Sarandeses, L. A. Eur. J. Org.
Chem. 2008, 1959–1966. (k) Takami, K.; Yorimitsu, H.; Shinokubo, H.;
Matsubara, S.; Oshima, K. Org. Lett. 2001, 3, 1997–1999. (l) Takami, K.;
Yorimitsu, H.; Oshima, K. Org. Lett. 2002, 4, 2993–2995. (m) Chen,
Y.-H.; Knochel, P. Angew. Chem., Int. Ed. 2008, 47, 7648–7651. (n) Chen,
Y.-H.; Sun, M.; Knochel, P. Angew. Chem., Int. Ed. 2009, 48, 2236–2239.
(o) Papoian, V.; Minehan, T. J. Org. Chem. 2008, 73, 7376–7379. (p)
Chupak, L. S.; Wolkowski, J. P.; Chantigny, Y. A. J. Org. Chem. 2009,
74, 1388–1390. (q) Lee, P. H.; Sung, S.-Y.; Lee, K. Org. Lett. 2001,
3, 3201–3204. (r) Lee, K.; Lee, J.; Lee, P. H. J. Org. Chem. 2002,
67, 8265–8268. (s) Lee, K.; Seomoon, D.; Lee, P. H. Angew. Chem., Int.
Ed. 2002, 41, 3901–3903. (t) Lee, P. H.; Lee, S. W.; Lee, K. Org. Lett.
2003, 5, 1103–1106. (u) Lee, P. H.; Lee, S. W.; Seomoon, D. Org. Lett.
2003, 5, 4963–4966. (v) Lee, S. W.; Lee, K.; Seomoon, D.; Kim, S.; Kim,
H.; Kim, H.; Shim, E.; Lee, M.; Lee, S.; Kim, M.; Lee, P. H. J. Org. Chem.
2004, 69, 4852–4855. (w) Lee, P. H.; Seomoon, D.; Lee, K.; Kim, S.;
Kim, H.; Kim, H.; Shim, E.; Lee, M.; Lee, S.; Lim, M.; Sridhar, M. Adv.
Synth. Catal. 2004, 346, 1641–1645. (x) Lee, P. H.; Seomoon, D.; Lee,
K.; Kim, H. Chem.ÀEur. J. 2007, 13, 5197–5206. (y) Shen, Z. L.; Goh,
K. K. K.; Yang, Y. S.; Lai, Y. C.; Wong, C. H. A.; Cheong, H. L.; Loh, T. P.
Angew. Chem., Int. Ed. 2011, 50, 511–514. (z) Hayashi, N.; Hirokawa, Y.;
Shibata, I.; Yasuda, M.; Baba, A. Org. Biomol. Chem. 2008, 6, 1949–1954.
A halogen substitution reaction using alkylindium species toward
haloalkenes:(aa) Nomura, R.; Miyazaki, S.-i.; Matsuda, H. J. Am. Chem.
Soc. 1992, 114, 2738–2740.
(13) The generation of 4d as a single product was observed by NMR
spectroscopy.
(14) The data obtained from the measurement was good, and the
analysis was completed to optimize the structure. Although some level A
alerts still remain, this structure should be justified because of the
excellent level of the data and structure refinement.
(15) Monoalkylindiums from the reaction of alkenes, InBr3, and
ketene silyl acetals were isolated: Nishimoto, Y.; Ueda, H.; Inamoto, Y.;
Yasuda, M.; Baba, A. Org. Lett. 2010, 12, 3390–3393.
(16) Cordero, B.; Gꢀomez, V.; Platero-Prats, A. E.; Revꢀes, M.;
Echeverría, J.; Cremades, E.; Barragꢀan, F.; Alvarez, S. Dalton Trans.
2008, 2832–2838.
(17) Brown, M. A.; Tuck, D. G.; Wells, E. J. Can. J. Chem. 1996,
74, 1535–1549.
(18) The reaction of 1b with 2 was examined at 0 °C and gave the
products in 86% yield and ratio of 3b/14b = 37/63. This result indicates
that the ratio of 3/14 does not depend on a reaction temperature.
(19) (a) Sakurai, H.; Imai, T.; Hosomi, A. Tetrahedron Lett. 1977,
18, 4045–4048. (b) Sugawara, M.; Yoshida, J. Tetrahedron 2000,
56, 4683–4689. (c) Ogasawara, M.; Okada, A.; Murakami, H.; Watanabe,
S.; Ge, Y.; Takahashi, T. Org. Let. 2009, 11, 4240–4243.
(20) We assume that butenylindiums 13aÀc with substituents are
relatively stable to oxygen, so a radical initiator (Et3B) or an open air
condition is required in a radical initiation step to facilitate an efficient
reaction. On the contrary, because nonsubstituted 13e easily generates a
radical species (not fully determined) assisted by oxygen, an additional
radical initiator is not required.
(4) Allylindium: (a) Araki, S.; Ito, H.; Butsugan, Y. J. Org. Chem.
1988, 53, 1831–1833. (b) Chan, T. H.; Yang, Y. J. Am. Chem. Soc. 1999,
121, 3228–3229. (c) Koszinowski, K. J. Am. Chem. Soc. 2010,
132, 6032–6040. Propargylindium:(d) Miao, W.; Chung, L. W.; Wu,
Y.-D.; Chan, T. H. J. Am. Chem. Soc. 2004, 126, 13326–13334. (e) Xu, B.;
Mashuta, M. S.; Hammond, G. B. Angew. Chem., Int. Ed. 2006,
45, 7265–7267. (f) Xu, B.; Hammond, G. B. Chem.ÀEur. J 2008,
14, 10029–10035. Indium enolate:(g) Babu, S. A.; Yasuda, M.; Shibata,
I.; Baba, A. Org. Lett. 2004, 6, 4475–4478. (h) Babu, S. A.; Yasuda, M.;
Shibata, I.; Baba, A. J. Org. Chem. 2005, 70, 10408–10419. Indium
homoenolate:(i) Shen., Z. L.; Goh, K. K. K.; Cheong, H. L.; Wong,
C. H. A.; Lai, Y. C.; Yang, Y. S.; Loh, T. P. J. Am. Chem. Soc. 2010,
132, 15852–15855. Alkylindium, see ref 3y.
(5) Nishimoto, Y.; Moritoh, R.; Yasuda, M.; Baba, A. Angew. Chem.,
Int. Ed. 2009, 48, 5462–5471.
(6) (a) Yasuda, M.; Haga, M.; Baba, A. Organometallics 2009,
28, 1998–2000. (b) Yasuda, M.; Haga, M.; Baba, A. Eur. J. Org. Chem.
2009, 5513–5517. (c) Yasuda, M.; Haga, M.; Nagaoka, Y.; Baba, A. Eur.
J. Org. Chem. 2010, 5359–5363.
(7) Yasuda, M.; Kiyokawa, K.; Osaki, K.; Baba, A. Organometallics
2009, 28, 132–139.
(8) Kiyokawa, K.; Yasuda, M.; Baba, A. Org. Lett. 2010, 12, 1520–1523.
(9) The coupling reaction of holocarbonyls and butenylindium from
butenyl Grignard reagent and indium halide was reported: Usugi, S.;
Tsuritani, T.; Yorimitsu, H.; Shinokubo, H.; Oshima, K. Bull. Chem. Soc.
Jpn. 2002, 75, 841–845.
(10) The reactions using BF3 OEt2 or AlCl3 instead of InI3 did not
3
give the product 3a at all.
(11) Wong, H. N. C.; Hon, M.-Y.; Tse, C. W.; Yip, Y.-C.; Tanko, J.;
Hudlicky, T. Chem. Rev. 1989, 89, 165–198.
(12) The reaction of 1b or 1c with InI3 (1/InI3 = 1:1) in toluene
gave monobutenylindium along with a small amount of dibutenylin-
dium. The second transmetalation could be relatively fast because the
steric hindrance of substituents of 1b (1c) are smaller than those of 1a
and 1d.
2043
dx.doi.org/10.1021/om200094m |Organometallics 2011, 30, 2039–2043