ACS Combinatorial Science
LETTER
Funding Sources
Rochette, J.; Sergheraert, C.; Jarry, C. Synthesis, Antimalarial Activity, and
Molecular Modeling of New Pyrrolo[1,2-a]quinoxalines, Bispyrrolo[1,
2-a]quinoxalines, Bispyrido[3,2-e]pyrrolo[1,2-a]pyrazines, and Bispyrrolo-
[1,2-a]thieno[3,2-e]pyrazines. J. Med. Chem. 2004, 47, 1997–2009.
(f) Kobayashi, K.; Irisawa, S.; Matoba, T.; Matsumoto, T.; Yoneda, K.;
Morikawa, O.; Konishi, H. Synthesis of Pyrrolo[1,2-a]quinoxaline
Derivatives by Lewis Acid-Catalyzed Reactions of 1-(2-Isocyanophe-
nyl)pyrroles. Bull. Chem. Soc. Jpn. 2001, 74, 1109–1114. (g) Armengol,
M.; Joule, J. A. Synthesis of Thieno[2,3-b]quinoxalines and Pyrrolo[1,
2-a]-quinoxalines from 2-Haloquinoxalines. J. Chem. Soc., Perkin Trans. 1
2001, 978–984. (h) Guillon, J.; Boulouard, M.; Lisowski, V.; Stiebing, S.;
Lelong, V.; Dallemagne, P.; Rault, S. Synthesis of New 2-(Amino-
methyl)-4-phenylpyrrolo[1,2-a]-quinoxalines and their Preliminary In-
Vivo Central Dopamine Antagonist Activity Evaluation in Mice. J. Pharm.
Pharmacol. 2000, 52, 1369–1375.
(5) (a) Yi, C. S.; Yun, S. Y. Scope and Mechanistic Study of the
Ruthenium-Catalyzed ortho-CꢀH Bond Activation and Cyclization
Reactions of Arylamines with Terminal Alkynes. J. Am. Chem. Soc.
2005, 127, 17000–17006. (b) Abonia, R.; Insuasty, B.; Quiroga, J.;
Kolshorn, H.; Meier, H. A Versatile Synthesis of 4,5-Dihydropyrrolo-
[1,2-a]quinoxalines. J. Heterocyclic Chem. 2001, 38, 671–674.
(6) (a) Patil, N. T.; Kavthe, R. D.; Raut, V. S.; Reddy, V. V. N.
Platinum-Catalyzed Formal Markownikoff’s Hydroamination/Hydro-
arylation Cascade of Terminal Alkynes Assisted by Tethered Hydroxyl
Groups. J. Org. Chem. 2009, 74, 6315–6318. (b) Patil, N. T.; Lakshmi,
P. G. V. V.; Singh, V. AuI-Catalyzed Direct Hydroamination/Hydro-
arylation and Double Hydroamination of Terminal Alkynes. Eur. J. Org.
Chem. 2010, No. 24, 4719–4731.
(7) (a) Ye, D.; Wang, J.; Zhang, X.; Zhou, Y.; Ding, X.; Feng, E.; Sun,
H.; Liu, G.; Jiang, H.; Liu, H. Gold-Catalyzed Intramolecular Hydro-
amination of Terminal Alkynes in Aqueous Media: Efficient and
Regioselective Synthesis of Indole-1-carboxamides. Green Chem. 2009,
11, 1201–1208. (b) Ye, D.; Zhang, X.; Zhou, Y.; Zhang, D.; Zhang, L.;
Wang, H.; Jiang, H.; Liu, H. Gold- and Silver-Catalyzed Intramolecular
Hydroamination of Terminal Alkynes: Water-Triggered Chemo- and
Regioselective Synthesis of Fused Tricyclic Xanthines. Adv. Synth. Catal.
2009, 351, 2770–2778. (c) Zhou, Y.; Zhai, Y.; Ji, X.; Liu, G.; Feng, E.; Ye,
D.; Zhao, L.; Jiang, H.; Liu, H. Gold(I)-Catalyzed One-Pot Tandem
Coupling/Cyclization: An Efficient Synthesis of Pyrrolo-/Pyrido[2,1-
b]benzo[d] [1,3]oxazin-1-ones. Adv. Synth. Catal. 2010, 352, 373–378.
(d) Zhou, Y.; Feng, E.; Liu, G.; Ye, D.; Li, J.; Jiang, H.; Liu, H. Gold-
Catalyzed One-Pot Cascade Construction of Highly Functionalized
Pyrrolo[1,2-a]quinolin-1(2H)-ones. J. Org. Chem. 2009, 74, 7344–7348.
(8) The seven-membered ring product 3As was unstable in the air at
room temperature, which could be oxidized to its dehydrogenated
product ethyl 5H-benzo[b]pyrrolo[1,2-d][1,4]diazepine-6-carboxylate.
(9) Crystallographic data have been deposited with the Cambridge
Crystallographic Data Centre as supplementary publication number
CCDC 771175 for 3Ai.
We gratefully acknowledge financial support from the National
Natural Science Foundation of China (Grants 20872153,
21021063 and 81025017).
’ REFERENCES
(1) (a) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Cascade
Reactions in Total Synthesis. Angew. Chem., Int. Ed. 2006,
45, 7134–7186. (b) Park, S.; Lee, D. Gold-Catalyzed Intramolecular
Allylation of Silyl Alkynes Induced by Silane Alcoholysis. J. Am. Chem.
Soc. 2006, 128, 10664–10665. (c) Tietze, L. F. Domino Reactions in
Organic Synthesis. Chem. Rev. 1996, 96, 115–136.
(2) (a) McReynolds, M. D.; Dougherty, J. M.; Hanson, P. R.
Synthesis of Phosphorus and Sulfur Heterocycles via Ring-Closing
Olefin Metathesis. Chem. Rev. 2004, 104, 2239–2258. (b) Alonso, F.;
Beletskaya, I. P.; Yus, M. Transition-Metal-Catalyzed Addition of
Heteroatom-Hydrogen Bonds to Alkynes. Chem. Rev. 2004,
104, 3079–3160. (c) Deiters, A.; Martin, S. F. Synthesis of Oxygen-
and Nitrogen-Containing Heterocycles by Ring-Closing Metathesis.
Chem. Rev. 2004, 104, 2199–2238. (d) Nakamura, I.; Yamamoto, Y.
Transition-Metal-Catalyzed Reactions in Heterocyclic Synthesis. Chem.
Rev. 2004, 104, 2127–2198. (e) Zeni, G.; Larock, R. C. Synthesis of
Heterocycles via Palladium π-Olefin and π-Alkyne Chemistry. Chem.
Rev. 2004, 104, 2285–2310. (f) Yet, L. Metal-Mediated Synthesis of
Medium-Sized Rings. Chem. Rev. 2000, 100, 2963–3008.
(3) For selected reviews on gold catalysis, see: (a) Bongers, N.;
Krause, N. Golden Opportunities in Stereoselective Catalysis. Angew.
Chem., Int. Ed. 2008, 47, 2178–2181. (b) Gorin, D. J.; Sherry, B. D.;
Toste, F. D. Ligand Effects in Homogeneous Au Catalysis. Chem. Rev.
2008, 108, 3351–3378. (c) Jimꢀenez-Nꢀu~nez, E.; Echavarren, A. M. Gold-
Catalyzed Cycloisomerizations of Enynes: A Mechanistic Perspective.
Chem. Rev. 2008, 108, 3326–3350. (d) Li, Z.; Brouwer, C.; He, C. Gold-
Catalyzed Organic Transformations. Chem. Rev. 2008, 108, 3239–3265.
(e) Skouta, R.; Li, C. J. Gold-Catalyzed Reactions of CꢀH bonds.
Tetrahedron 2008, 64, 4917–4938. (f) Muzart, J. Gold-Catalysed Reac-
tions of Alcohols: Isomerisation, Inter- and Intramolecular Reactions
Leading to CꢀC and CꢀHeteroatom Bonds. Tetrahedron 2008,
64, 5815–5849. (g) Shen, H. C. Recent Advances in Syntheses of
Heterocycles and Carbocycles via Homogeneous Gold Catalysis. Part 1:
Heteroatom Addition and Hydroarylation Reactions of Alkynes, Al-
lenes, and Alkenes. Tetrahedron 2008, 64, 3885–3903. (h) Gorin, D. J.;
Toste, D. Relativistic Effects in Homogeneous Gold Catalysis. Nature
2007, 446, 395–403. (i) F€urstner, A.; Davies, P. W. Catalytic Carbophilic
Activation: Catalysis by Platinum and Gold π Acids. Angew. Chem., Int.
Ed. 2007, 46, 3410–3449. (j) Jimꢀenez-Nꢀu~nez, E.; Echavarren, A. M.
Molecular Diversity through Gold Catalysis with Alkynes. Chem. Com-
mun. 2007, 333–346. (k) Hashmi, A. S. K. Gold-Catalyzed Organic
Reactions. Chem. Rev. 2007, 107, 3180–3211.
(10) The synthetic methods of the deuterated starting materials
were provided in the Supporting Information.
(4) For recent examples of synthesis and SAR, see: (a) Tradtrantip,
L.; Sonawane, N. D.; Namkung, W.; Verkman, A. S. Nanomolar Potency
Pyrimido-pyrrolo-quinoxalinedione CFTR Inhibitor Reduces Cyst Size
in a Polycystic Kidney Disease Model. J. Med. Chem. 2009, 52,
6447–6455. (b) Szabꢀo, G.; Kiss, R.; Pꢀayer-Lengyel, D.; Vukics, K.;
(11) (a) Shi, X.; Gorin, D. J.; Toste, F. D. Synthesis of 2-Cyclopen-
tenones by Gold(I)-Catalyzed Rautenstrauch Rearrangement. J. Am.
Chem. Soc. 2005, 127, 5802–5803. (b) Liu, X. -Y.; Ding, P.; Huang, J. -S.;
Che, C. -M. Synthesis of Substituted 1,2-Dihydroquinolines and Qui-
nolines from Aromatic Amines and Alkynes by Gold(I)-Catalyzed
Tandem Hydroamination-Hydroarylation under Microwave-Assisted
Conditions. Org. Lett. 2007, 9, 2645–2648. (c) Benitez, D.; Shapiro,
N. D.; Tkatchouk, E.; Wang, Y.; Goddard, W. A., III; Toste, F. D. A
Bonding Model for Gold(I) Carbene Complexes. Nature Chem. 2009,
1, 482–486.
00
Szikra, J.; Baki, A.; Molnꢀar, L.; Fischer, J.; Keseru, G. M. Hit-to-Lead
Optimization of Pyrrolo[1,2-a]quinoxalines as Novel Cannabinoid
Type 1 Receptor Antagonists. Bioorg. Med. Chem. Lett. 2009, 19, 3471–
3475. (c) Guillon, J.; Moreau, S.; Mouray, E.; Sinou, V.; Forfar, I.; Fabre,
S. B.; Desplat, V.; Millet, P.; Parzy, D.; Jarry, C.; Grellier, P. New
Ferrocenic Pyrrolo[1,2-a]quinoxaline Derivatives: Synthesis, and in
Vitro Antimalarial Activity. Bioorg. Med. Chem. 2008, 16, 9133–9144.
(d) Guillon, J.; Forfar, I.; Mamani-Matsuda, M.; Desplat, V.; Saliꢁege, M.;
Thiolat, D.; Massip, S.; Tabourier, A.; Lꢀeger, J.-M.; Dufaure, B.;
Haumont, G.; Jarry, C.; Mossalayi, D. Synthesis, Analytical Behaviour
and Biological Evaluation of New 4-Substituted Pyrrolo[1,2-a]quinoxalines
as Antileishmanial Agents. Bioorg. Med. Chem. 2007, 15, 194–210. (e)
Guillon, J.; Grellier, P.; Labaied, M.; Sonnet, P.; Lꢀeger, J.-M.; Dꢀeprez-
^
Poulain, R.; Forfar-Bares, I.; Dallemagne, P.; Lemaitre, N.; Pꢀehourcq, F.;
213
dx.doi.org/10.1021/co1000844 |ACS Comb. Sci. 2011, 13, 209–213