6. Lee, B. D.; Dawson, V. L.; Dawson, T. M., Trends Pharmacol Sci. 2012,
33, 365.
benzoic acids 9 through amide bond formation. Suzuki coupling
reactions of 6d or 6g with various boronic acids in the presence
of Pd catalysts at elevated temperatures provided compounds
8h‒8m.
7. (a) Deng, X.; Choi, H. G.; Buhrlage, S. J.; Gray, N. S., Exp. Opin. Ther.
Pat. 2012, 22, 1415; (b)Kethiri, R. R.; Bakthavatchalam, R., Exp. Opin.
Ther. Pat. 2014, 24, 745.
8. Deng, X.; Dzamko, N.; Prescott, A.; Davies, P.; Liu, Q.; Yang, Q.; Lee, J.
D.; Patricelli, M. P.; Nomanbhoy, T. K.; Alessi, D. R.; Gray, N. S., Nat.
Chem. Biol. 2011, 7, 203.
9. Estrada, A. A.; Liu, X.; Baker-Glenn, C.; Beresford, A.; Burdick, D. J.;
Chambers, M.; Chan, B. K.; Chen, H.; Ding, X.; DiPasquale, A. G.;
Dominguez, S. L.; Dotson, J.; Drummond, J.; Flagella, M.; Flynn, S.; Fuji,
R.; Gill, A.; Gunzner-Toste, J.; Harris, S. F.; Heffron, T. P.; Kleinheinz,
T.; Lee, D. W.; Le Pichon, C. E.; Lyssikatos, J. P.; Medhurst, A. D.;
Moffat, J. G.; Mukund, S.; Nash, K.; Scearce-Levie, K.; Sheng, Z.; Shore,
D. G.; Tran, T.; Trivedi, N.; Wang, S.; Zhang, S.; Zhang, X.; Zhao, G.;
Zhu, H.; Sweeney, Z. K., J. Med. Chem. 2012, 55, 9416.
10. Henderson, J. L.; Kormos, B. L.; Hayward, M. M.; Coffman, K. J.; Jasti,
J.; Kurumbail, R. G.; Wager, T. T.; Verhoest, P. R.; Noell, G. S.; Chen,
Y.; Needle, E.; Berger, Z.; Steyn, S. J.; Houle, C.; Hirst, W. D.; Galatsis,
P., J Med Chem 2015, 58 (1), 419.
11. Troxler, T.; Greenidge, P.; Zimmermann, K.; Desrayaud, S.; Druckes, P.;
Schweizer, T.; Stauffer, D.; Rovelli, G.; Shimshek, D. R., Bioorg. Med.
Chem. Lett. 2013, 23, 4085.
Scheme 1. Synthesis of 5-substituent-N-arylbenzamide
derivatives 6‒8. Reagents and conditions: (a) R1Br, K2CO3,
acetone; (b) LiOH, THF/water; (c) R2NH2, EDCI/HOBT or
HATU, DMF; (d) R1Br, KOH, MeOH; (e) R3B(OH)2, Pd(PPh3)4
or Pd(PPh3)2Cl2, DME/water.
12. Fell, M. J.; Mirescu, C.; Basu, K.; Cheewatrakoolpong, B.; DeMong, D.
E.; Ellis, J. M.; Hyde, L. A.; Lin, Y.; Markgraf, C. G.; Mei, H.; Miller, M.;
Poulet, F. M.; Scott, J. D.; Smith, M. D.; Yin, Z.; Zhou, X.; Parker, E. M.;
Kennedy, M. E.; Morrow, J. A., J. Pharmacol. Exp. Ther. 2015, 355, 397.
13. Garofalo, A. W.; Adler, M.; Aubele, D. L.; Brigham, E. F.; Chian, D.;
Franzini, M.; Goldbach, E.; Kwong, G. T.; Motter, R.; Probst, G. D.;
Quinn, K. P.; Ruslim, L.; Sham, H. L.; Tam, D.; Tanaka, P.; Truong, A.
P.; Ye, X. M.; Ren, Z., Bioorg. Med. Chem. Lett. 2013, 23, 1974.
14. Franzini, M.; Ye, X. M.; Adler, M.; Aubele, D. L.; Garofalo, A. W.;
Gauby, S.; Goldbach, E.; Probst, G. D.; Quinn, K. P.; Santiago, P.; Sham,
H. L.; Tam, D.; Truong, A.; Ren, Z., Bioorg. Med. Chem. Lett. 2013, 23,
1967.
In summary, we discovered a novel series of 5-substituent-N-
arylbenzamide derivatives as potent LRRK2 inhibitors. Extensive
SAR studies led to the identification of compounds 8e and 8i
with high potencies of LRRK2 inhibition and good selectivity
over hundreds of kinases. Compound 8e demonstrated good in
vitro and in vivo pharmacokinetic profile with high exposure in
both brain and blood (Br/Bl ratio = 1.3). 8e was orally
bioavailable (F = 91.6%) in comparison with the previously
reported compound 8i (GSK2578215A, F = 12.2%). Both
compound 8e and 8i were observed to be highly tissue bound
(99.7% and 99.6%, respectively) in mouse brain. The low free
unbound drug concentration of 8i in brain was proposed to be
accountable for its lack of efficacy in CNS (no significant
inhibition against phosphorylation of S910 or S935 in mouse
brain). Further efforts will be focused on improving the series’
free unbound fraction in brain.
15. (a) Nichols, P. L. E.; Andrew J.; Bamborough, P.; Jandu, K. S.; Philps, O.
J.; Andreotti, D., WO2011038572 2011; (b) Reith, A. D.; Bamborough, P.;
Jandu, K.; Andreotti, D.; Mensah, L.; Dossang, P.; Choi, H. G.; Deng, X.;
Zhang, J.; Alessi, D. R.; Gray, N. S., Bioorg. Med. Chem. Lett. 2012, 22,
5625.
16. (a) Manzoni, C.; Mamais, A.; Dihanich, S.; Abeti, R.; Soutar, M. P.;
Plun-Favreau, H.; Giunti, P.; Tooze, S. A.; Bandopadhyay, R.; Lewis, P.
A., Biochim. Biophys. Acta. 2013, 1833, 2900; (b) Saez-Atienzar, S.;
Bonet-Ponce, L.; Blesa, J. R.; Romero, F. J.; Murphy, M. P.; Jordan, J.;
Galindo, M. F., Cell Death Dis. 2014, 5, e1368.
17. Gomez-Suaga, P.; Rivero-Rios, P.; Fdez, E.; Blanca Ramirez, M.; Ferrer,
I.; Aiastui, A.; Lopez De Munain, A.; Hilfiker, S., Hum. Mol. Genet.
2014, 23, 6779.
Acknowledgments
18. Lobbestael, E.; Civiero, L.; De Wit, T.; Taymans, J. M.; Greggio, E.;
Baekelandt, V., Sci. Rep. 2016, 6, 33897.
Authors thank Dr. Qian Liu for useful discussions on binding
mode of 5-substituent-N-arylbenzamide analogues with LRRK2
protein, Mr. Morris Sui and Mrs. Yun Liu for NMR and LCMS
analysis. This work was supported in part by a Therapeutics
Development Initiative Award from the Michael J. Fox
Foundation for Parkinson’s Research (to A.D.R.).
19. Russo, I.; Berti, G.; Plotegher, N.; Bernardo, G.; Filograna, R.; Bubacco,
L.; Greggio, E., J. Neuroinflammation 2015, 12, 230.
20. (a) Steger, M.; Tonelli, F.; Ito, G.; Davies, P.; Trost, M.; Vetter, M.;
Wachter, S.; Lorentzen, E.; Duddy, G.; Wilson, S.; Baptista, M. A.; Fiske,
B. K.; Fell, M. J.; Morrow, J. A.; Reith, A. D.; Alessi, D. R.; Mann, M.,
Elife 2016, 5, e12813; (b) Ito, G.; Katsemonova, K.; Tonelli, F.; Lis, P.;
Baptista, M. A.; Shpiro, N.; Duddy, G.; Wilson, S.; Ho, P. W.; Ho, S. L.;
Reith, A. D.; Alessi, D. R., Biochem. J. 2016, 473, 2671.
21. Perera, G.; Ranola, M.; Rowe, D. B.; Halliday, G. M.; Dzamko, N., Sci.
Rep. 2016, 6, 31391.
Supplementary Material
22. The LRRK2 homology model was initially built on a ROCK1 template as
described in reference 15b; the depiction in Figure 2 is taken from a
more recent homology model based on the MLK1 kinase domain (PDB:
4UY9): Marusiak, A. A.; Stephenson, N. L.; Baik, H.; Trotter, E. W.; Li,
Y.; Blyth, K.; Mason, S.; Chapman, P.; Puto, L. A.; Read, J. A.;
Brassington, C.; Pollard, H. K.; Phillips, C.; Green, I.; Overman, R.;
Collier, M.; Testoni, E.; Miller, C. J.; Hunter, T.; Sansom, O. J.; Brognard,
J., Cancer Res. 2016, 76, 724.
Supplementary data associated with this article can be found in
the online version.
References and notes
1. Davie, C. A., Br. Med. Bull 2008, 86, 109.
2. (a) Calabrese, V. P., Neurology 2007, 69, 223; (b)Kalia, L. V.; Lang, A.
E., Lancet 2015, 386, 896.
23. Lipinski, C. A., J. Pharmacol. Toxicol. Methods 2000, 44, 235.
24. The human biological samples were sourced ethically and their research
use was in accord with the terms of the informed consents.
25. All studies were conducted in accordance with the GSK Policy on the
Care, Welfare and Treatment of Laboratory Animals and were reviewed
the Institutional Animal Care and Use Committee either at GSK or by the
ethical review process at the institution where the work was performed.
26. In vitro profiling of the 300 member kinase panel was performed at
reactionbiology. xcom/webapps/site/KinaseDetail.aspx).
3. Schapira, A. H., Trends Pharmacol. Sci. 2009, 30, 41.
4. (a) AlDakheel, A.; Kalia, L. V.; Lang, A. E., Neurotherapeutics 2014, 11,
6; (b) Kalia, L. V.; Kalia, S. K.; Lang, A. E., Mov. Disord. 2015, 30, 1442.
5. (a) Zimprich, A.; Biskup, S.; Leitner, P.; Lichtner, P.; Farrer, M.; Lincoln,
S.; Kachergus, J.; Hulihan, M.; Uitti, R. J.; Calne, D. B.; Stoessl, A. J.;
Pfeiffer, R. F.; Patenge, N.; Carbajal, I. C.; Vieregge, P.; Asmus, F.;
Muller-Myhsok, B.; Dickson, D. W.; Meitinger, T.; Strom, T. M.;
Wszolek, Z. K.; Gasser, T., Neuron 2004, 44 (4), 601; (b) Dachsel, J. C.;
Farrer, M. J., Arch. Neurol. 2010, 67, 542; (c) Cookson, M. R., Curr
Neurol. Neurosci. Rep. 2015, 15, 42.