C. L. Manach et al. / Tetrahedron Letters 52 (2011) 1462–1465
1465
dried over Na2SO4, and concentrated in vacuo. Filtration on silica gel (DCM/
MeOH 95:5) gave 590 mg (80%) of 4 as a colorless syrup. H2SO4 (57 L) was
Acknowledgment
l
added dropwise to a solution of 4 (133 mg) in 1.7 mL of propargyl alcohol. The
solution was stirred at 80 °C for 1 h. The mixture was neutralized with
saturated aqueous NaHCO3. After dilution with DCM, the organic layer was
washed with NaHCO3 and brine, dried over Na2SO4 and concentrated in vacuo.
Flash chromatography on silica gel (DCM/MeOH 45:1) gave 91.4 mg (69%) of 5
as a brown syrup. Selected analytical data for 5: mp: 129–130 °C (AcOEt/Cy);
We gratefully acknowledge the Institut de Chimie des
Substances Naturelles for financial support of this study.
References and notes
½
a 2D5
ꢁ
= ꢀ14.0 (c 1, CHCl3); 1H NMR (360 MHz, CDCl3), d (ppm): 8.11 (dd, 2H;
4
4
Jo-m = 7.9, Jo-p = 1.4; 2H-o (Bz)); 7.61 (tt, 1H; Jp-m = 7.5; Jp-o = 1.4; H-p (Bz));
1. Guénard, D.; Guéritte-Voegelein, F.; Potier, P. Acc. Chem. Res. 1993, 26, 160–
167; For reviews see: Ojima, I.; Kuduk, S.; Chakravarty, S. Adv. Med. Chem. 1999,
4, 69–124; Nicolaou, K. C.; Dai, W.-M.; Guy, R. K. Angew. Chem., Int. Ed. 2003, 33,
15–44; Kingston, D. G. I. Taxol and Its Analogues. In Anticancer Agents from
Natural Products; Cragg, G. M., Kingston, D. G. I., Newman, D. J., Eds.; CRC Press:
Boca Raton, FL, 2005; pp 89–122.
2. Guéritte-Voegelin, F.; Guénard, D.; Lavelle, F.; Le Goff, M.-T.; Mangatel, L.;
Potier, P. J. Med. Chem. 1991, 34, 992–998; For reviews: Kingston, D. G. I. J. Nat.
Prod. 2000, 63, 726–734; Guéritte, F. Curr. Pharm. Des. 2001, 7, 1229–1249.
3. Nogales, E.; Wolf, S. G.; Downing, K. H. Nature 1998, 391, 199–203.
4. Löwe, J.; Li, H.; Downing, K. H.; Nogales, E. J. Mol. Biol. 2001, 313, 1045–1057.
5. Snyder, J. P.; Nettles, J. H.; Cornett, B.; Downing, K. H.; Nogales, E. Proc. Natl.
Acad. Sci. U.S.A. 2001, 98, 5312–5316.
4
7.47 (ddt, 2H; Jo-m = 7.9, Jm-p = 7.5, Jm-m = 1.4;
2 H-m (Bz)); 5.44 (d, 1H;
J4-5 = 6.9; H-5); 5.33 (dd, 1H; J3-4 = 4.9, J4-5 = 6.9; H-4); 5.30 (s, 1H; H-1); 4.99
(d, 1H; J3-4 = 4.9; H-3); 4.51 (s, 1H; H-2); 4.27 (dd, 1H; Jgem = 15.7, 4J = 2.3;
OCHaHb); 4.20 (dd, 1H; Jgem = 15.7, 4J = 2.3; OCHaHb); 2.40 (t, 1H; 4J = 2.3;
CCH); 2.27 (br s, 1H, OH). 13C NMR (90 MHz, CDCl3), d (ppm): 170.4 C-6; 165.4
CO (Bz); 134.2 C-p (Bz); 130.3 2C-o (Bz); 128.9 2 C-m (Bz); 128.5 C-q (Bz);
106.4 C-1; 83.9 C-3; 78.3 CCH; 78.1 C-2; 76.3 C-4; 75.5 CCH; 69.9 C-5; 54.7
OCH2. MS (ESI+): m/z = 341.1 M+Na+; HRMS (ESI+): calcd for C16H14O7Na:
341.0632, found: 341.0644.
15. CCDC 804513 contains the supplementary crystallographic data for this paper.
These data can be obtained free of charge from The Cambridge Crystallographic
16. Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057–3064;
Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed.
2002, 41, 2596–2599.
6. (a) Klar, U.; Graf, H.; Schenk, O.; Röhr, B.; Schulz, H. Bioorg. Med. Chem. Lett.
1998, 8, 1397–1402; (b) Fuji, K.; Watanabe, Y.; Ohtsubo, T.; Nuruzzaman, M.;
Hamajima, Y.; Kohno, M. Chem. Pharm. Bull. 1999, 47, 1334–1337; (c) Howarth,
J.; Kenny, P.; McDonnell, S.; O’Connor, A. Bioorg. Med. Chem. Lett. 2003, 13,
2693–2697; (d) Geng, X.; Geney, R.; Pera, P.; Bernacki, R. J.; Ojima, I. Bioorg.
Med. Chem. Lett. 2004, 14, 3491–3494; (e) Almqvist, F.; Manner, S.; Thornqvist,
V.; Berg, U.; Wallin, M.; Frejd, T. Org. Biomol. Chem. 2004, 2, 3085–3090; (f)
Roussi, F.; Ngo, Q. A.; Thoret, S.; Guéritte, F.; Guénard, D. Eur. J. Org. Chem. 2005,
3952–3961; (g) Ganesh, T.; Norris, A.; Sharma, S.; Bane, S.; Alcaraz, A. A.;
Snyder, J. P.; Kingston, D. G. Bioorg. Med. Chem. 2006, 14, 3447–3454; (h)
Zefirova, O. N.; Nurieva, E. V.; Lemcke, H.; Ivanov, A. A.; Shishov, D. V.; Weiss, D.
G.; Kuznetsov, S. A.; Zefirov, N. S. Bioorg. Med. Chem. Lett. 2008, 18, 5091–5094;
(i) Zefirova, O. N.; Nurieva, E. V.; Lemcke, H.; Ivanov, A. A.; Zyk, N. V.; Weiss, D.
G.; Kuznetsov, S. A.; Zefirov, N. S. Mendeleev Commun. 2008, 18, 183–185.
7. The coordinates are from Alcaraz, A. A.; Mehta, A. K.; Johnson, S. A.; Snyder, J. P.
J. Med. Chem. 2006, 49, 2478–2488.
8. Gueritte-Voegelein, F.; Guénard, D.; Mangatal, L.; Potier, P.; Guilhem, J.;
Cesario, M.; Pascard, C. Acta Crystallogr., Sect. C 1990, 46, 781–784.
9. For reviews on the use of carbohydrate-derived scaffolds in medicinal
chemistry, see: Meutermans, W.; Le, G. T.; Becker, B. ChemMedChem 2006, 1,
1164–1194; Nicotra, F.; Cipolla, L.; La Ferla, B.; Airoldi, C.; Zona, C.; Orsato, A.;
Shaikh, N.; Russo, L. J. Biotechnol. 2009, 144, 234–241.
10. For some examples of the use of bicyclic glycidic scaffolds in bioactive
molecules, see: Peri, F.; Cipolla, L.; La Ferla, B.; Nicotra, F. Chem. Commun. 2000,
2303–2304; Peri, F.; Bassetti, R.; Caneva, E.; de Gioia, L.; La Ferla, B.; Presta, M.;
Tanghetti, E.; Nicotra, F. J. Chem. Soc., Perkin Trans. 1 2002, 638–644; Peri, F.;
Airoldi, C.; Colombo, S.; Martegani, E.; van Neuren, A. S.; Stein, M.; Marinzi, C.;
Nicotra, F. ChemBioChem 2005, 6, 1839–1848; Cervi, G.; Peri, F.; Battistini, C.;
Gennari, C.; Nicotra, F. Bioog. Med. Chem. 2006, 14, 3349–3367.
11. Weymouth-Wilson, A. C.; Clarkson, R. A.; Jones, N. A.; Best, D.; Wilson, F. X.;
Pino-González, M.-S.; Fleet, G. W. J. Tetrahedron Lett. 2009, 50, 6307–6310.
12. The preparation of bicyclic lactone 3 was previously reported in the PhD thesis
of CLM defended on October 17, 2008 at the University of Paris Sud, Orsay.
13. Sowa, W. Can. J. Chem. 1969, 47, 3931–3934.
17. Aryl azides 6–12 were prepared from the corresponding anilines, via the
diazonium salt.19
18. Benzyl azides 14 and 15 were prepared from p-hydroxy and p-methoxylbenzyl
alcohol, via tosylation in situ and nucleophilic substitution with azide anion.20
19. Molteni, G.; Del Buttero, P. Tetrahedron: Asymmetry 2007, 18, 1197–1201.
20. Soltani Rad, M. N.; Behrouz, S.; Khalafi-Nezhad, A. Tetrahedron Lett. 2007, 48,
3445–3449.
21. Lee, B.-Y.; Park, S. R.; Jeon, H. B.; Soo-Kim, K. Tetrahedron Lett. 2006, 47, 5105–
5109.
22. Representative procedure for the synthesis of 22 using click-chemistry.
Lactone 5 (32 mg, 0.10 mmol, 1.0 equiv) and 4-fluorophenyl azide (15 mg,
0.11 mmol, 1.1 equiv) were dissolved in methylene chloride (300
water (210 L). Solutions of sodium ascorbate (40 L, 0.25 M in water, 2.0 mg,
L, 0.10 M in water, 1.2 mg,
lL) and
l
l
0.01 mmol, 0.1 equiv) and CuSO4ꢂ5H2O (50
l
0.005 mmol, 0.05 equiv) were added, and the mixture was stirred overnight
at room temperature. After dilution with methylene chloride, the organic layer
was washed with water, dried over sodium sulfate, and concentrated in vacuo.
After chromatography on silica gel (cyclohexane/ethyl acetate 1:1), the pure
desired products was obtained (42 mg, 92%). Selected analytical data for 22: 1
H
NMR (300 MHz, CDCl3),
d (ppm): 8.04 (s, 1H; H-triazole); 7.95 (dd, 2H;
Jo-m = 8.1, 4Jo-p = 1.4; 2H-o (Bz)); 7.66 (dd, 2H; Jo-m = 9.1, 4Jo-F = 4.6; 2 H-o (Ar));
4
7.52 (tt, 1H; Jp-m = 7.4, Jp-o = 1.2; H-p (Bz)); 7.36 (dd, 2H; Jm-o = 8.1, Jm-p = 7.4;
3
2H-m (Bz)); 7.14 (dd, 2H; Jm-o = 9.1, Jm-F = 8.0; 2H-m (Ar)); 5.58 (d, 1H;
J4-5 = 6.8; H-5); 5.36 (dd, 1H; J4-5 = 6.8, J3-4 = 4.9; H-4); 5.24 (s, 1H; H-1); 5.07
2
(d, 1H; J3-4 = 4.9; H-3); 4.95 (d, 1H; JHa-Hb = 12.0; OCHaHb); 4.61 (d, 1H;
2JHa-Hb = 12.0; OCHaHb); 4.50 (s, 1H; H-2); 13C NMR (75 MHz, CDCl3), d (ppm):
1
171.7 C-6; 165.3 CO (Bz); 162.7 (d, JC-F = 244) Cq-F (Ar); 144.8 Cq (triazole);
4
134.2 CH-p (Bz); 133.2 (d, JC-3F = 3) Cq (Ar); 130.0 2CH-o (Bz); 128.9 2CH-m
(Bz); 128.3 Cq (Bz); 122.7 (d; JC-F = 9) 2CH-o (Ar); 122.0 CH (triazole); 116.9
2
(d; JC-F = 23) 2CH-m (Ar); 108.5 CH-1; 84.5 CH-3; 77.6 CH-2; 76.5 CH-4; 70.2
CH-5; 61.3 OCH2; MS (ESI+): m/z = 455.9 M+H+; 477.9 M+Na+; HRMS (ESI+):
calcd for
22H18FN3O7, 2H2O: C, 53.77; H, 4.51; N, 8.55. Found: C, 54.03; H, 4.11; N, 8.09.
23. In the standard in vitro tubulin depolymerization assay used, taxol showed an
IC50 of 0.5 M under the same conditions (IC50 is the concentration that
C22H20FN3O7: 456.1202; found: 456.1202. Anal. Calcd for
14. 1,2-O-Isopropylidene-
in 23 mL of freshly distilled methylene chloride (DCM). N,N-Dimethyl-
aminopyridine (535 mg) was added, followed by 377 L of benzoyl chloride,
a-L-glucurono-3,6-lactone (500 mg) 3 was dissolved
C
l
l
at 0 °C. After stirring 5 min, the temperature was allowed to reach room
temperature. After 3 h stirring, control by thin layer chromatography showed
no trace of starting compound, and the reaction was quenched by addition of
saturated aqueous NaHCO3. The organic layer was then washed with brine,
inhibits 50% of the rate of microtubule disassembly). These tests were
preformed by Sylviane Thoret at the Institut de Chimie des Substances
Naturelles, CNRS.