crystal structure analysis. We also thank Prof. S. Ogoshi for
valuable discussions on the subject.
Notes and references
1 For pioneering works of ruthenium-catalyzed codimerization of
alkynes and alkenes, see: B. M. Trost and A. F. Indolese, J. Am.
Chem. Soc., 1993, 115, 4361. For reviews, see: (a) B. M. Trost,
F. D. Toste and A. B. Pinkerton, Chem. Rev., 2001, 101, 2067;
(b) B. M. Trost, M. U. Frederiksen and M. T. Rudd, Angew.
Chem., Int. Ed., 2005, 44, 6630.
2 For ruthenium-catalyzed codimerization of alkynes and alkenes to
provide 1,3-dienes, see: (a) T. Mitsudo, S.-W. Zhang, M. Nagao
and Y. Watanabe, J. Chem. Soc., Chem. Commun., 1991, 598;
(b) M. Murakami, M. Ubukata and Y. Ito, Tetrahedron Lett.,
1998, 39, 7361; (c) T. Nishimura, Y. Washitake and S. Uemura,
Adv. Synth. Catal., 2007, 349, 2563; (d) N. M. Neisius and
B. Plietker, Angew. Chem., Int. Ed., 2009, 48, 5752.
Scheme 3 Plausible reaction pathway.
3 For palladium-catalyzed codimerization and cotrimerization of
alkynes and alkenes to provide 1,3-dienes, see: (a) N. Tsukada,
H. Setoguchi, T. Mitsuboshi and Y. Inoue, Chem. Lett., 2006,
1164; (b) A. T. Lindhardt, M. L. H. Mantel and T. Skrydstrup,
Angew. Chem., Int. Ed., 2008, 47, 2668; (c) K. Itoh, K. Hirai,
M. Sasaki, Y. Nakamura and H. Nishiyama, Chem. Lett., 1981,
865; (d) L. Zhao and X. Lu, Org. Lett., 2002, 4, 3903;
(e) H. Horiguchi, K. Hirano, T. Satoh and M. Miura, Adv. Synth.
Catal., 2009, 351, 1431.
4 For rhodium-catalyzed codimerization of alkynes and alkenes to
provide 1,3-dienes, see: Y. Shibata, M. Hirano and K. Tanaka,
Org. Lett., 2008, 10, 2829.
5 For cobalt-catalyzed codimerization of alkynes and alkenes, see:
S. Mannathan and C.-H. Cheng, Chem. Commun., 2010, 46, 1923.
6 H. Horie, T. Kurahashi and S. Matsubara, Chem. Commun., 2010,
46, 7229.
7 For related Ni-catalyzed addition reaction of alkynes to carbon–
carbon unsaturated bonds, see: (a) M. Shirakura and M. Suginome,
J. Am. Chem. Soc., 2008, 130, 5410; (b) K. Ogata, H. Murayama,
J. Sugasawa, N. Suzuki and S. Fukuzawa, J. Am. Chem. Soc., 2009,
131, 3176; (c) M. Shirakura and M. Suginome, J. Am. Chem. Soc.,
2009, 131, 5060; (d) K. Ogata, J. Sugasawa and S. Fukuzawa, Angew.
Chem., Int. Ed., 2009, 48, 6078; (e) M. Shirakura and M. Suginome,
Org. Lett., 2009, 11, 523; (f) K. Ogata, J. Sugasawa, Y. Atsuumi and
S. Fukuzawa, Org. Lett., 2010, 12, 148; (g) M. Shirakura and
M. Suginome, Angew. Chem., Int. Ed., 2010, 49, 3827.
Scheme 4 Cooligomerization of acrylamide and alkyne.
complex A0 quantitatively. The molecular structure of A0 was
unambiguously confirmed by the X-ray crystal structure
analysis, which showed that two amides and one phosphine
ligand are coordinated to the nickel in a trigonal planar
arrangement (Fig. 1). A short intermolecular Nꢀ ꢀ ꢀO distance
(2.816 A) may indicate that two amides are intermolecularly
NHꢀ ꢀ ꢀOQC hydrogen-bonded, forming
a
pseudodiene
complex.13 It was also found that a stoichiometric reaction
of complex A0 with an equivalent of 2a in dioxane at 40 1C
afforded 1,3-diene 7aa in 43% yield.14
8 For Ni-catalyzed intramolecular codimerization, see: T. N.
Tekavec and J. Louie, Tetrahedron, 2008, 64, 6870.
In summary, we have developed a new nickel-catalyzed
codimerization of an acrylate and an alkyne to provide 1,3-
diene. We demonstrated for the first time that 2-aminopyridine
acts as a ligand and contributes for selective formation of
1,3-dienes via codimerization of an acrylate and an alkyne.
Furthermore, we discovered that two molecules of acrylamides
are able to form a pseudodiene complex with nickel(0); such a
complex allows exclusive intermolecular codimerization of an
acrylamide and an alkyne.
9 For related Ni-catalyzed cyclo-oligomerization, see: (a) S.-i. Ikeda,
N. Mori and Y. Sato, J. Am. Chem. Soc., 1997, 119, 4779; (b) N. Mori,
S.-i. Ikeda and Y. Sato, J. Am. Chem. Soc., 1999, 121, 2722; (c) J. Seo,
H. M. P. Chui, M. J. Heeg and J. Montgomery, J. Am. Chem. Soc.,
1999, 121, 476; (d) S. Ogoshi, A. Nishimura and M. Ohashi, Org. Lett.,
2010, 12, 3450.
10 (a) T. Sambaiah, L.-P. Li, D.-J. Huang, C.-H. Lin,
D. K. Rayabarapu and C.-H. Cheng, J. Org. Chem., 1999, 64,
3663; (b) A. Herath, W. Li and J. Montgomery, J. Am. Chem. Soc.,
2008, 130, 469; (c) S. Ogoshi, T. Haba and M. Ohashi, J. Am.
Chem. Soc., 2009, 131, 10350; (d) Y. Nakao, H. Idei, K. S. Kaniva
and T. Hiyama, J. Am. Chem. Soc., 2009, 131, 15996; (e) S. Ogoshi,
A. Nishimura, T. Haba and M. Ohashi, Chem. Lett., 2009, 1166.
11 (a) B. Breit and W. Seiche, J. Am. Chem. Soc., 2003, 125, 6608;
(b) M. Weis, C. Waloch, W. Seiche and B. Breit, J. Am. Chem.
Soc., 2006, 128, 4188; (c) I. Usui, S. Schmidt, M. Keller and
B. Breit, Org. Lett., 2008, 10, 1207.
This work was supported by Grants-in-Aid from MEXT,
Japan. T.K. also acknowledges Asahi Glass Foundation,
Kansai Research Foundation and Mizuho Foundation for
the Promotion of Sciences. We thank Dr T. Fujihara for X-ray
12 (a) T. Yamamoto, K. Igarashi, J. Ishizu and A. Yamamoto, J. Chem.
Soc., Chem. Commun., 1979, 554; (b) T. Yamamoto, K. Igarashi,
S. Komiya and A. Yamamoto, J. Am. Chem. Soc., 1980, 102, 7448;
(c) H. Hoberg, A. Ballesteros, A. Sigan, C. Jegat, D. Barhausen and
´
¨
A. Milchereit, J. Organomet. Chem., 1991, 407, C23.
13 (a) I. M. Klotz and J. S. Franzen, J. Am. Chem. Soc., 1962, 84,
3461; (b) I. M. Klotz and S. B. Farnham, Biochemistry, 1968, 7,
3879; (c) R. Taylor, O. Kennard and W. Versichel, J. Am. Chem.
Soc., 1983, 105, 5761.
14 The reaction of 6a (0.40 mmol) and 2a (0.60 mmol) in the presence
of catalytic amount of the nickel complex A0 (0.05 mmol) in
dioxane (80 1C) also afforded 7aa in 77% yield.
Fig. 1 ORTEP drawing of A0.
c
2660 Chem. Commun., 2011, 47, 2658–2660
This journal is The Royal Society of Chemistry 2011