J. Li et al.
with constant stirring for 2 h. At the end of the reaction, the conver-
sion of alkene and the selectivity were determined by GC. All data
in the tables are the average values of three experiments.
Hydrosilylation of styrene with triethoxysilane: β-Adduct [triethoxy
(phenylethyl)silane] and α-adduct [triethoxy(1-phenylethyl)silane].
Spectroscopic data (1H NMR) and elemental analysis data of the
prepared compounds were in agreement with the assigned struc-
tures and with those found in the literature.[22]
Hydrosilylation of o-methylstyrene with triethoxysilane
β-Adduct [triethoxy(o-methylphenylethyl)silane]: 1H NMR δ (ppm):
1.05 (t, J = 8.5 Hz, 2H, Si―CH2), 1.37 (t, J = 7.0 Hz, 9H, CH3), 2.42
(s, 3H, CH3), 2.77 (t, J = 8.5Hz, 2H, CH2), 3.87 (q, J = 7.0 Hz, 6H,
O―CH2), 7.08–7.35 (m, 4H, Ph). 13C NMR δ (ppm): 142.77 (ipso,
CH2CH2Ph), 135.32 (ipso), 130.11 (ortho), 128.06 (meta), 126.11
(meta), 125.82 (para) (CH3Ph), 58.40 (OCH2CH3), 26.34 (CH2CH2Ph),
19.07 (CH3Ph), 18.36 (OCH2CH3), 11.53 (SiCH2). 29Si NMR δ (ppm):
ꢁ46.09. MS (EI) m/z (%): 283 (M+, 16), 282 (100). Anal. Calcd for
[triethoxy(o-methylphenylethyl)silane] (C15H26O3Si): C 63.78; H
9.28; O 16.99. Found: C 63.75; H 9.27; O 17.00. IR (KBr): 449, 632,
Figure 1. Molecular structure of 3a drawn with 30% probability dis-
placement ellipsoids.
764, 784, 969, 1015, 1415, 2766, 2930 cmꢁ1
.
118.62 (t, J = 15 Hz, Pt―CꢀC), 128.40 (t, JC―P = 8 Hz, meta), 129.81
(m, ortho), 131.80 (para), 132.01 (m, ipso) (PPh3). 29Si NMR δ (ppm):
6.90, 14.21. 31P NMR δ (ppm): 31.60 (JP―Pt = 2898 Hz). Anal. Calcd
for 5b (C40H56P2Pt Si4): C, 53.01; H, 6.23. Found: C 52.99; H 6.21.
Complex 6b: trans-Pt[PPh2Si(CH3)3]2[CHꢀCSi(CH2CH3)3]2 (flavescent
Hydrosilylation of m-methylstyrene with triethoxysilane
β-Adduct [triethoxy(m-methylphenylethyl)silane]: 1H NMR δ (ppm):
1.10 (t, J = 8.5 Hz, 2H, Si―CH2), 1.36 (t, J = 7.0 Hz, 9H, CH3), 2.43
(s, 3H, CH3), 2.79 (t, J = 8.5Hz, 2H, CH2), 3.94 (q, J = 7.0 Hz, 6H,
O―CH2), 7.15–7.22 (m, 4H, Ph). 13C NMR δ (ppm): 144.60 (ipso,
CH2CH2Ph), 137.59 (ipso), 128.65 (ortho), 128.27 (meta), 126.38
(ortho), 124.91 (para) (CH3Ph), 58.33 (OCH2CH3), 28.99 (CH2CH2Ph),
21.32 (CH3Ph), 18.34 (OCH2CH3), 12.85 (SiCH2). 29Si NMR δ (ppm):
ꢁ46.24. MS (EI) m/z (%): 283 (M+, 15), 282 (100). Anal. Calcd for
[triethoxy(m-methylphenylethyl)silane] (C15H26O3Si): C 63.78; H
9.28; O 16.99. Found: C 63.77; H 9.28; O 16.98. IR (KBr): 457, 637,
1
solid, yield 81%), IR (KBr): 2073 cmꢁ1 (νCꢀC). H NMR δ (ppm): 0.01
(s, 18H, Si(CH3)3), 0.54 (q, J = 12 Hz, 12H, Si(CH2CH3)3), 0.93
(t, J = 12 Hz, 18H, Si(CH2CH3)3), 6.90–7.73 (m, 20H, PPh2).13
C
NMR δ (ppm): 0.10 (Si(CH3)3), 4.60 (Si (CH2CH3)3), 7.51 (Si (CH2CH3)3),
110.31 (C―CꢀC), 125.22 (t, J = 15 Hz, Pt―CꢀC), 127.31 (t, JC―P
=
8 Hz, meta), 129.5 (m, ortho), 131.13 (para), 132.11 (m, ipso)
(PPh3). 29Si NMR δ (ppm): 7.10, 16.50. 31P NMR (CDCl3, 162 MHz) δ
(ppm): 31.60 (JP―Pt = 2818 Hz). Anal. Calcd for 6b (C46H68P2Pt Si4):
C 55.78; H 6.92. Found: C 55.80; H 6.92.
715, 743, 767, 971, 1017, 1417, 2810, 3042 cmꢁ1
.
Complex 7b: trans-Pt[PPh2Si(CH3)3]2[CHꢀCSi(CH(CH3)2)3]2 (flavescent
solid, yield 83%), IR (KBr): 2068 cmꢁ1 (νCꢀC). 1H NMR δ (ppm): 0.01
(s, 18H, Si(CH3)3), 0.35 (septet, J = 7.3Hz, 6H, CH(CH3)2), 0.61
(d, J = 7.3Hz, 36H, CH(CH3)2), 7.08–7.81 (m, 20H, PPh2). 13C NMR δ
(ppm): ꢁ0.03 (Si(CH3)3), 10.90 (CH(CH3)2), 18.41 (CH(CH3)2), 94.92
(C―CꢀC), 124.13 (t, J = 15 Hz, Pt―CꢀC), 127.31 (t, JC―P = 8 Hz,
meta), 129.92 (m, ortho), 131.84 (para), 132.41 (m, ipso) (PPh3). 29Si
NMR δ (ppm): 6.80, 18.10. 31P NMR δ (ppm): 30.60 (JP―Pt = 2834 Hz).
Anal. Calcd for 7b (C52H80P2Pt Si4): C, 58.12; H, 7.50. Found: C
58.10; H 7.51.
Complex 8b: trans-Pt[PPh2Si(CH3)3]2(CHꢀCSiPh3)2 (flavescent solid,
yield 73%), IR (KBr): 2127 cmꢁ1 (νCꢀC). 1H NMR δ (ppm): 0.08 (s, 18H,
Si(CH3)3), 6.90–8.02 (m, 50H, PPh2, Si (Ph)3).13C NMR δ (ppm): 1.00
(Si(CH3)3), 102.51 (C―CꢀC), 118.82 (t, J = 15 Hz, Pt―CꢀC), 127.81
(t, JC―P = 6 Hz, meta) , 130.10 (m, ortho), 132.01 (para), 134.73
(m, ipso) (PPh3), 129.11 (t, J = 6 Hz, meta), 131.31 (m, ortho), 132.22
(para), 134.93 (m, ipso) (SiPh3). 29Si NMR δ (ppm): 7.10, ꢁ15.60.
31P NMR δ (ppm): 31.80 (JP―Pt = 2818 Hz). Anal. Calcd for 8b
(C70H68P2Pt Si4): C 65.75; H 5.36. Found: C 65.73; H 5.37.
Hydrosilylation of p-methylstyrene with triethoxysilane
β-Adduct [triethoxy(p-methylphenylethyl)silane]: 1H NMR δ (ppm):
1.03 (t, J = 8.5 Hz, 2H, Si―CH2), 1.28 (t, J = 7.0 Hz, 9H, CH3), 2.31
(s, 3H, CH3), 2.70 (t, J= 8.5 Hz, 2H, CH2), 3.87 (q, J= 7.0 Hz, 6H, O―CH2),
7.07–7.11 (m, 4H, Ph). 13C NMR δ (ppm): 141.66 (ipso, CH2CH2Ph),
134.97 (ipso), 129.02 (ortho), 127.82 (meta) (Ph), 58.80 (OCH2CH3),
28.53 (CH2CH2Ph), 20.96 (CH3Ph), 18.12 (OCH2CH3), 12.08 (SiCH2). 29Si
NMR δ (ppm): ꢁ45.96. MS (EI) m/z (%): 283 (M+, 16), 282 (100).
Anal. Calcd for [triethoxy(p-methylphenethyl)silane] (C15H26O3Si):
C 63.78; H 9.28; O 16.99. Found: C 63.79; H 9.27; O 16.99. IR
(KBr): 453, 631, 767, 857, 971, 1019, 1411, 2768, 3231 cmꢁ1
.
Hydrosilylation of p-methoxystyrene with triethoxysilane
β-Adduct [triethoxy(p-methoxyphenylethyl)silane]: 1H NMR δ (ppm):
1.02 (t, J= 8.5Hz, 2H, Si―CH2), 1.24 (t, J= 7.0Hz, 9H, CH3), 2.70
(t, J= 8.5Hz, 2H, CH2), 3.70 (s, 3H, O―CH3), 3.79 (q, J= 7.0 Hz, 6H,
O―CH2), 6.95–7.26 (m, 4H, Ph). 13C NMR δ (ppm): 157.79
(ipso, CH2CH2Ph), 136.57 (ipso), 128.58 (meta), 113.65 (ortho)
(CH3OPh), 58.21 (OCH2CH3), 54.84(OCH3), 28.05 (CH2CH2Ph), 18.23
(OCH2CH3), 12.92 (SiCH2). 29Si NMR (CDCl3) δ (ppm): ꢁ46.29. MS (EI)
m/z (%): 299 (M+, 22), 298 (100). Anal. Calcd for [triethoxy(p-
methoxyphenylethyl)silane] (C15H26O4Si): C 60.37; H 8.78; O 21.44.
Found: C 60.35; H 8.78; O 21.45. IR (KBr): 467, 637, 781, 857, 964,
Hydrosilylation
Typical hydrosilylation reaction procedures were as follows. A given
amount of the alkene and silane was added to a 10 ml round-bot-
tomed flask equipped with a magnetic stirrer and a given amount
of catalyst was added. This mixture was heated to the appropriate
temperature and the hydrosilylation reaction was allowed to proceed
1085, 1483, 2884, 3222 cmꢁ1
.
wileyonlinelibrary.com/journal/aoc
Copyright © 2014 John Wiley & Sons, Ltd.
Appl. Organometal. Chem. 2014, 28, 454–460