Journal of the American Chemical Society
ARTICLE
the results of a series of control experiments. More importantly,
these control experiments disclose some features of the event of
alkyl iodide reductive elimination: (1) this reductive elimination
is proved to be a stereospecific process; and (2) both alkyl iodide
oxidative addition and reductive elimination are not effected by
TEMPO additive. Furthermore, it was found that the combina-
tion of palladium and DPPF might promote the process of radical
transfer, which could make the scrambling of stereochemistry of
alkyl iodide. We believe that the findings described in this paper
will be helpful for further development of metal-catalyzed for-
mation of carbonꢀhalide bond.
(d) Culkin, D. A.; Hartwig, J. F. Acc. Chem. Res. 2003, 36, 234. (e) Fu,
G. C. Acc. Chem. Res. 2008, 41, 1555.
(3) For selected reviews, see: (a) Hartwig, J. F. Acc. Chem. Res. 2008,
41, 1534. (b) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc.
Chem. Res. 1998, 31, 805. (c) Ley, S. V.; Thomas, A. W. Angew. Chem.,
Int. Ed. 2003, 42, 5400. (d) Kunz, K.; Scholz, U.; Ganzer, D. Synlett
2003, 2428. (e) Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450. (f) Surry,
D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338. (g) Hartwig,
J. F. Acc. Chem. Res. 1998, 31, 852. (h) Hartwig, J. F. Angew. Chem., Int.
Ed. 1998, 37, 2046. (i) Yang, B. H.; Buchwald, S. L. J. Organomet. Chem.
1999, 576, 125. (j) Prim, D.; Campagne, J.-M.; Joseph, D.; Andrioletti, B.
Tetrahedron 2002, 58, 2041. (k) Beletskaya, I. P.; Cheprakov, A. V.
Coord. Chem. Rev. 2004, 2337.
(4) For a review, see: Vigalok, A. Chem.—Eur. J. 2008, 14, 5102.
(5) Ruddick, J. D.; Shaw, B. L. J. Chem. Soc. A 1969, 2969.
(6) (a) Luinstra, G. A.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc.
1993, 115, 3004. (b) Lindner, E.; Wang, Q.; Mayer, H. A.; Fawzi, R.;
Steimann, M. Organometallics 1993, 12, 1865. (c) Goldberg, K. I.; Yan,
J.; Winter, E. L. J. Am. Chem. Soc. 1994, 116, 1573. (d) Goldberg, K. I.;
Yan, J.; Breitung, E. M. J. Am. Chem. Soc. 1995, 117, 6889.
(7) (a) Ettorre, R. Inorg. Nucl. Chem. Lett. 1969, 5, 45. (b) Yahav-
Levi, A.; Goldberg, I.; Vigalok, A. J. Am. Chem. Soc. 2006, 128, 8710. (c)
Yahav-Levi, A.; Goldberg, I.; Vigalok, A.; Vedernikov, A. N. J. Am. Chem.
Soc. 2008, 130, 724. (d) Kaspi, A. W.; Goldberg, I.; Vigalok, A. J. Am.
Chem. Soc. 2010, 132, 10626. (e) Yahav-Levi, A.; Goldberg, I.; Vigalok.,
A.; Vedernikov, A. N. Chem. Commun. 2010, 46, 3324.
4. EXPERIMENTAL SECTION
General Procedure for Pd-Catalyzed Cycloisomerization.
In a 25 mL Schlenk tube, the mixture of 1a (0.2 mmol, 84 mg),
Pd(OAc)2 (0.02 mmol, 4.6 mg), and DPPF (0.06 mmol, 34 mg) were
dissolved in toluene (4 mL). Then, the reaction mixture was heated to
reflux under nitrogen atmosphere. The reaction was monitored by TLC.
When compound 1a disappeared, the mixture was cooled to room
temperature and directly subjected to column chromatography (silica
gel, petroleum ether/EtOAc 50:1 to 5:1 gradient) to give a yellow oil (70
mg, 84% yield). See also Supporting Information.
2a: 1H NMR (400 MHz, CDCl3): δ 0.99 (t, J = 7.2 Hz, 3H), 1.08 (s,
3H), 1.96 (q, J = 7.2 Hz, 2H), 2.43 (s, 3H), 2.54 (d, J = 11.2 Hz, 1H),
3.16ꢀ3.22 (m, 2H), 3.28 (d, J = 10.0 Hz, 1H), 3.33 (d, J = 11.2 Hz, 1H),
3.55 (d, J = 15.6 Hz, 1H), 5.20 (s, 1H), 7.34 (d, J = 8.4 Hz, 2H), 7.69 (d,
J = 8.4 Hz, 2H); 13C NMR (100 MHz, CDCl3): 12.0, 18.2, 21.5, 25.4,
27.0, 36.0, 47.5, 52.4, 124.3, 127.7, 129.7, 133.1, 136.3, 143.6; MS (m/z):
419 (Mþ); HRMS calcd for C16H22INO2S: 419.0416, found: 419.0414.
(8) (a) Roy, A. H.; Hartwig, J. F. J. Am. Chem. Soc. 2001, 123, 1232.
(b) Roy, A. H.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 13944. (c)
Roy, A. H.; Hartwig, J. F. Organometallics 2004, 23, 1533.
(9) Kaspi, A.; Yahav-Levi, A.; Goldberg, I.; Vigalok, A. Inorg. Chem.
2008, 47, 5.
(10) (a) Frech, C. M.; Milstein, D. J. Am. Chem. Soc. 2006,
128, 12434. (b) Feller, M.; Iron, M. A.; Shimon, L. J. W.; Diskin-Posner,
Y.; Leitus, G.; Milstein, D. J. Am. Chem. Soc. 2008, 130, 14374.
(11) For selected examples, see: (a) Tsou, T. T.; Kochi, J. K. J. Org.
Chem. 1980, 45, 1930. (b) Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc.
2002, 124, 14844. (c) Thathagar, M. B.; Rothenberg, G. Org. Biomol.
Chem. 2006, 4, 111. (d) Shirakawa, E.; Imazaki, Y.; Hayashi, T. Chem.
Commun. 2009, 5088. (e) Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.;
Zhang, S.; Shi, Z. J. Am. Chem. Soc. 2006, 128, 7416. (f) Ma, S.; Lu, X. J.
Org. Chem. 1993, 58, 1245. For a review, see: (g) Sheppard, T. D. Org.
Biomol. Chem. 2009, 7, 1043.
(12) (a) Dekleva, T. W.; Forster, D. Adv. Catal. 1986, 34, 81. (b)
Rankin, J.; Benyei, A. C.; Poole, A. D.; Cole-Hamilton, D. J. J. Chem. Soc.,
Dalton Trans. 1999, 3771. (c) Maitlis, P. M.; Haynes, A.; James, B. R.;
Catellani, M.; Chiusoli, G. P. Dalton Trans. 2004, 3409. (d) Braunstein,
P.; Chauvin, Y.; Fischer, J.; Olivier, H.; Strohmann, C.; Toronto, D. V.
New J. Chem. 2000, 24, 437.
’ ASSOCIATED CONTENT
S
Supporting Information. Preparative methods and spec-
b
tral and analytical data for all new compounds and X-ray crystal-
lographic data for 2b (CIF). This material is available free of
’ AUTHOR INFORMATION
Corresponding Author
tongxf@ecust.edu.cn; dqiu@iccas.ac.cn
’ ACKNOWLEDGMENT
(13) (a) Watson, D. A.; Su, M; Teverovskiy, G.; Zhang, Y.; García-
Fortanet, J.; Kinzel, T.; Buchwald, S. L. Science 2009, 325, 1661. (b)
Shen, X.; Hyde, A. M.; Buchwald, S. L. J. Am. Chem. Soc. 2010,
132, 14076. For selected examples of stoichiometry reductive elimina-
tion of Ar-F, see(c) Grushin, V. V. Chem.—Eur. J. 2002, 8, 1006.
(d) Grushin, V. V.; Marshall, W. J. Organometallics 2007, 26, 4997.
(e) Grushin, V. V.; Marshall, W. J. Organometallics 2008, 27, 4825.
(f) Yandulov, D. V.; Tran, N. T. J. Am. Chem. Soc. 2007, 129, 1342.
(14) Newman, S. G.; Lautens, M. J. Am. Chem. Soc. 2010, 132, 11416.
(15) For reviews, see: (a) Muniz, K. Angew. Chem., Int. Ed. 2009,
48, 9412. (b) Sehnal, P.; Taylor, R. J. K.; Fairlamb, I. J. S. Chem. Rev.
2010, 110, 824. (c) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010,
110, 1147. (d) Xu, L.-M.; Li, B.-J.; Yang, Z.; Shi, Z.-J. Chem. Soc. Rev.
2010, 39, 712.
(16) (a) Liu, H.; Yu, J.; Wang, L; Tong, X. Tetrahedron Lett. 2008,
49, 6924. (b) Fang, X.; Tong, X. Chem. Commun. 2010, 46, 3800. (c)
Fang, X.; Li, C.; Tong, X. Chem. Commun. 2009, 5311. (d) Fang, X.;
Tong, X. Tetrahedron Lett. 2010, 51, 317.
(17) For representative examples, see: (a) Negishi, E.; Ma, S.;
Amanfu, J.; Copꢀeret, C.; Miller, J. A.; Tour, J. M. J. Am. Chem. Soc.
This work is supported by Shanghai Municipal Committee of
Science and Technology (09ZR1408500) and the Fundamental
Research Funds for the Central Universities. Special gratitude
goes to Professor Limin Wang and Ms. Shuzhen Jiang for their
long-term support. We also thank Professors Guosheng Liu
(SIOC) and Zengming Shen (SJTU) for helpful discussions.
’ REFERENCES
(1) For selected reviews, see: (a) Collman, J. P.; Hegedus, L. S.;
Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition
Metal Chemistry, 2nd ed.; University Science Books: Mill Valley, CA,
1987. (b) Crabtree, R. H. The Organometallic Chemistry of the Transition
Metals, 4th ed; Wiley Interscience: New York, 2005. (c) Hartwig, J. F.
Organotransition Metal Chemistry: From Bonding to Catalysis; University
Science Books: Sausalito, CA, 2009.
(2) For selected reviews, see: (a) Crisp, G. T. Chem. Soc. Rev. 1998,
27, 427. (b) Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508.
(c) Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009.
6192
dx.doi.org/10.1021/ja201204g |J. Am. Chem. Soc. 2011, 133, 6187–6193