LETTER
Synthesis of ( )-Laurencenone C
3063
TMSCl, CH2Cl2, –78 °C to 0 °C)16 to 5 also gave no trace Supporting Information for this article is available online at
of the desired addition products.
Me2CuLi
Acknowledgment
O
R1
We are grateful to the National Science Council of Republic of
China (Taiwan), National Tsing Hua University for financial sup-
port.
3
2
A
O
R2
Me2CuLi
B
References and Notes
A
R1 = R2 = H or Me
(1) For examples of isolations of chemigrenes, see:
(a) Erickson, K. L. In Marine Natural Products: Chemical
and Biological Perspectives, Vol. 5; Scheuer, P. J., Ed.;
Academic Press: New York, 1990, 131–257. (b) Attaway,
D. H.; Zaborsky, O. R. In Marine Biotechnology:
Pharmaceutical and Bioactive Natural Products; Plenum
Press: London, 1993, 333–334. (c) Sim, J. J.; Lin, G. H.;
Wing, R. M. Tetrahedron Lett. 1974, 15, 3487. (d)Kikuchi,
H.; Suzuki, T.; Suzuki, M.; Kurosawa, E. Bull. Chem. Soc.
Jpn. 1985, 58, 2473. (e) Elsworth, J. F. J. Nat. Prod. 1989,
52, 893. (f) Rashid, M. A.; Gustafson, K. R.; Gardellina,
J. H.; Boyd, M. R. Nat. Prod. Lett. 1995, 6, 255.
(g) Francisco, M. E. Y.; Erickson, K. L. J. Nat. Prod. 2001,
64, 790. (h) Dorta, E.; Díaz-Marrero, A. R.; Cueto, M.;
D’Croz, L.; Maté, J. L.; Darias, J. Tetrahedron Lett. 2004,
45, 7065; and references cited therein.
(2) (a) Kennedy, D. J.; Selby, I. A.; Thomson, R. H.
Phytochemistry 1988, 27, 1761. (b) For the isolation of
laurencenone C from the other natural source, see: Asakawa,
Y.; Tori, M.; Masuya, T.; Frahm, J.-P. Phytochemistry 1990,
29, 1577.
(3) For examples on total syntheses of chamigrenes, see:
(a) Wolinsky, L. E.; Faulkner, D. J. J. Org. Chem. 1976, 41,
597. (b) Martin, J. D.; Pérez, C.; Ravelo, J. L. J. Am. Chem.
Soc. 1986, 108, 7801. (c) Niwa, H.; Yoshida, Y.; Hasegawa,
T.; Yamada, K. Tetrahedron 1991, 47, 2155. (d) White, D.
E.; Stewart, I. C.; Crubbs, R. H.; Stoltz, B. M. J. Am. Chem.
Soc. 2008, 130, 810. (e) Cui, Q.; Kang, L.; Yang, H. S.; Xu,
X. H. Chin. Chem. Lett. 2009, 554; and references cited
therein.
Figure 2 Proposed unfavorable steric interactions for 1,4-addition
of 5 and favorable co-planar state of the A-ring
We envisioned that the failure of the addition reaction
might be attributed to the unfavorable steric interactions
between the nucleophile and the C2–C3 subunit of the A-
ring (Figure 2, state A) and the C-1 axial methyl group
(R2 = Me). Nevertheless, it was possible that such interac-
tions could be minimized when the A ring was forced to
adopt a planar conformation by the introduction of an ex-
tra double bond (state B). In this regard, we then rerouted
our original synthetic plan by transforming the mixture of
5a and 5b into dienone 11 using the well-established sele-
nylation–oxidative elimination method (Scheme 3). To
our delight, when 11 was allowed to react with Me2CuLi
in the presence of trimethylsilyl chloride,16 the target mol-
ecule 1 could be produced in high yield (88%), indicating
that a planar conformation of the A-ring was indeed favor-
able for the conjugate addition. The spectral data (1H, 13C
NMR) of 1 were found to agree well with those reported
for the natural product.2,1,7
a)
b)
O
5a + 5b
( )-1
60%
88%
(4) Hatsui, T.; Wang, J.; Takeshita, H. Bull. Chem. Soc. Jpn.
1994, 67, 2507.
11
(5) Chen, Y. J.; Wang, C. Y.; Lin, W. Y. Tetrahedron 1996, 52,
Scheme 3 Reagents and conditions: (a) LDA (1.2 equiv), PhSeCl
(1.2 equiv), THF, –78 °C, 30 min, then work-up, aq H2O2 (30%, 10
equiv), CH2Cl2, 10 min; (b) Me2CuLi (3 equiv), TMSCl (3 equiv),
CH2Cl2, –78 °C to r.t., 3 h.
13181.
(6) Srikrishna, A.; Lakshmi, B. V.; Mathews, M. Tetrahedron
Lett. 2006, 47, 2103.
(7) Srikrishna, A.; Babu, R. R. Tetrahedron 2008, 64, 10501.
(8) White, D. E.; Stewart, I. C.; Seashore-Ludlow, B. A.;
Grubbs, R. H.; Stoltz, B. M. Tetrahedron 2010, 66, 4668.
(9) Shia, K. S.; Chang, N. Y.; Yip, J.; Liu, H. J. Tetrahedron
Lett. 1998, 39, 7713.
(10) Khalafallah, A. K.; Elal, R. M. A.; Kanzi, N. A. A.
Heterocycl. Commun. 2002, 397.
(11) De Keyser, J.-L.; De Cock, C. J. C.; Poupaert, J. H.;
Dumont, P. J. Org. Chem. 1998, 53, 4859.
(12) For preparing a stock solution of LN, see: Liu, H. J.; Yip, J.;
Shia, K. S. Tetrahedron Lett. 1997, 38, 2253.
(13) Yefidoff, R.; Albeck, A. Tetrahedron 2004, 60, 8093.
(14) The relative stereochemistry of two diastereoisomers
remains to be determined.
(15) Mehta, G.; Nandakumar, J. Tetrahedron Lett. 2001, 42,
7667.
(16) Asao, N.; Lee, S.; Yamamoto, Y. Tetrahedron Lett. 2003,
44, 4265.
In summary, a concise total synthesis of ( )-laurencenone
C (1) has been accomplished in 11 steps. This new one-
pot approach, involved a Knoevenagel condensation com-
bined with a Diels–Alder reaction, and a reductive alkyla-
tion reaction of the resulting Diels–Alder adduct, as
efficient key steps in the creation of the B-ring as well as
the spiro quaternary center. Compared with other prece-
dents, our synthesis has the advantage of offering straight-
forward access to 1 in relatively high overall yield
(17.4%), at low cost and without the formation of side
products or isomers. The synthetic strategies employed
for the synthesis of 1 are being applied to the syntheses of
other chamigrenes, and the results will be reported in due
course.
(17) The spectral data of 1 are as follows. IR (neat): 3023, 2960,
2932, 1668, 1610, 1445 cm–1; 1H NMR (CDCl3, 400 MHz):
Synlett 2010, No. 20, 3061–3064 © Thieme Stuttgart · New York