ACS Combinatorial Science
RESEARCH ARTICLE
two 20 min cycles and then rinsed with DMF, DCM, and MeOH.
Optional Reduction: The beads were treated with about 50 μL of a
1 mL solution of TFA containing 25 mg NH4I (does not dissolve
well) and >20 μL DMS. After 20 min, the bead was removed, and
washed exhaustively with H2O, DCM, and MeOH.
Peptide Cleavage and Analysis. After drying in a PCR tube,
these beads were treated with a few drops of 20 mg/mL CNBr in
70% TFA (aq.) overnight in the dark for at least 12 h. After drying
the beads under vacuum, the resulting white solid was dissolved
in 30% H2O/MeCN. 0.5 μL of the peptide solution was mixed
with a 0.5 μL 30% H2O/MeCN with either 4.5 mg/mL R-cyano-
4-hydroxycinnamic acid or 20 mg/mL sinapinic acid, and dried
on a plate for MALDI-TOF analysis.
105, 1603–1662. (e) Wong, O. A.; Shi, Y. Organocatalytic Oxidation.
Asymmetric Epoxidation of Olefins Catalyzed by Chiral Ketones and
Iminium Salts. Chem. Rev. 2008, 108, 3958–3987. (h) Li, Z.; Zhang, W.;
Yamamoto, H. Vanadium-Catalyzed Enantioselective Desymmetriza-
tion of meso Secondary Allylic Alcohols and Homoallylic Alcohols.
Angew. Chem., Int. Ed. 2008, 47, 7520–7522.
(5) For representative reviews of combinatorial catalysis, see:(a)
Francis, M. B.; Jamison, T. F.; Jacobsen, E. N. Combinatorial Libraries of
Transition-Metal Complexes, Catalysts and Materials. Curr. Opin. Chem.
Biol. 1998, 2, 422–428. (b) Kuntz, K. W.; Snapper, M. L.; Hoveyda, A. H.
Combinatorial Catalyst Discovery. Curr. Opin. Chem. Biol. 1999,
3, 313–319. (c) Jandeleit, B.; Schaefer, D. J.; Powers, T. S.; Turner,
H. W.; Weinberg, W. H. Combinatorial Materials Science and Catalysis.
Angew. Chem., Int. Ed. 1999, 38, 2494–2532. (d) Reetz, M. T. Combi-
natorial and Evolution-Based Methods in the Creation of Enantioselec-
tive Catalysts. Angew. Chem., Int. Ed. 2001, 40, 284–310.(e) Wennemers,
H. Combinatorial Methods for the Discovery of Catalysts. In Highlights
in Bioorganic Chemistry; Schmuck, C., Wennemers, H., Eds.; Wiley-
VCH: Weinheim, Germany, 2004; pp 436ꢀ445.
’ ASSOCIATED CONTENT
S
Supporting Information. Synthetic protocols and char-
b
acterization of 6, 9, and 10; experimental details of peptide and
library validation; and additional oxidation studies of library.This
acs.org.
(6) For a few examples of enantioselective oxidations mediated by
enzymes, see: (a) Landwehr, M.; Hochrein, L.; Otey, C. R.; Kasravan, A.;
B€ackvall, J.-E.; Arnold, F. H. Enantioselective R-Hydroxylation of
2-Arylacetic Acid Derivatives and Buspirone Catalyzed by Engineered
Cytochrome P450 BM-3. J. Am. Chem. Soc. 2006, 128, 6058–6059. (b)
Peters, M. W.; Meinhold, P.; Glieder, A.; Arnold, F. J. Regio- and
Enantioselective Alkane Hydroxylation with Engineered Cytochromes
P450 BM-3. J. Am. Chem. Soc. 2003, 125, 13442–13450. (c) Kayser,
M. K. “Designer Reagents” Recombinant Microorganisms: New and
Powerful Tools for Organic Synthesis. Tetrahedron 2009, 65, 947–974.
(d) Reetz, M. T.; Wu, S. Laboratory Evolution of Robust and Enantio-
selective BaeyerꢀVilliger Monooxygenases for Asymmetric Catalysis. J.
Am. Chem. Soc. 2010, 131, 15424–15432. (e) For a more general
discussion of stereoselectivity in enzyme engineering, see: Reetz,
M. T. Laboratory Evolution of Stereoselective Enzymes: A Prolific
Source of Catalysts for Asymmetric Reactions. Angew. Chem., Int. Ed.
2011, 50, 138–174.
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: scott.miller@yale.edu.
Funding Sources
This work is supported by National Institutes of Health (R01-
GM096403) to S.J.M. P.A.L. was partially supported by NIH
CBI-TG-GM-067543.
’ REFERENCES
(7) (a) Francis, M. B.; Jacobsen, E. N. Discovery of Novel Catalysts
for Alkene Epoxidation from Metal-Binding Combinatorial Libraries.
Angew. Chem., Int. Ed. 1999, 38, 937–941. (b) Moreira, R.; Havranek,
M.; Sames, D. New Fluorogenic Probes for Oxygen and Carbene
Transfer: A Sensitive Assay for Single Bead-Supported Catalysts. J.
Am. Chem. Soc. 2001, 123, 3927–3931.
(8) Ohlmeyer, M. H. J.; et al. Complex Synthetic Chemical Libraries
Indexed with Molecular Tags. Proc. Natl. Acad. Sci. U.S.A. 1993,
90, 10922–10926.
(9) (a) Furka, A.; Sebestyen, F.; Asgedom, M.; Dibo, G. General
Method for Rapid Synthesis of Multicomponent Peptide Mixtures. Int. J.
Pept. Protein Res. 1991, 37, 487–493. (b) Lam, K. S.; Salmon, S. E.;
Hersh, E. M.; Hruby, V. J.; Kazmierski, W. M.; Knapp, R. J. A New Type
of Synthetic Peptide Library for Identifying Ligand-Binding Activity.
Nature 1991, 354, 82–84. (c) Lam, K. S.; Lebl, M.; Krchnꢀak, V. The
“One-Bead-One-Compound” Combinatorial Library Method. Chem.
Rev. 1997, 97, 411–448.
(10) For several applications of the OBOC approach to catalyst
discovery, see: (a) Taylor, S. J.; Morken, J. P. Thermographic Selection
of Effective Catalysts from an Encoded Polymer-Bound Library. Science
1998, 280, 267–270. (b) Krattiger, P.; McCarthy, C.; Pfaltz, A.;
Wennemers, H. Catalyst-Substrate Coimmobilization: A Strategy for
Catalyst Discovery in Split-and-Mix Libraries. Angew. Chem., Int. Ed.
2003, 42, 1722–1724. (c) Krattiger, P.; Kovasy, R.; Revell, J. D.;
Wennemers, H. Using Catalyst-Substrate Coimmobilization for the
Discovery of Catalysts for Asymmetric Aldol Reactions in Split-and-
Mix Libraries. QSAR Comb. Sci. 2005, 24, 1158–1163. (d) Upert, G.;
Merten, C. A.; Wennemers, H. Nanoliter Plates—Versatile Tools for the
Screening of Split-and-Mix Libraries On-Bead and Off-Bead. Chem.
Commun. 2010, 46, 2209–2211.
(1) (a) Miller, S. J. In Search of Peptide-Based Catalysts for
Asymmetric Organic Synthesis. Acc. Chem. Res. 2004, 37, 601–610.
(b) Colby Davie, E. A.; Mennen, S. M.; Xu, Y.; Miller, S. J. Asymmetric
Catalysis Mediated by Synthetic Peptides. Chem. Rev. 2007,
107, 5759–5812. (c) Revell, J. D.; Wennemers, H. Peptidic Catalysts
Developed by Combinatorial Screening Methods. Curr. Opin. Chem.
Biol. 2007, 11, 269–278.
(2) (a) Kelly, D. R.; Roberts, S. M. Oligopeptides as Catalysts for
Asymmetric Epoxidation. Biopolymers 2006, 84, 74–89. (b) Berkessel,
A.; Koch, B.; Toniolo, C.; Rainaldi, M.; Broxterman, Q. B.; Kaptein, B.
Asymmetric Enone Epoxidation by Short Solid-Phase Bound Peptides:
Further Evidence for Catalyst Helicity and Catalytic Activity of Indivi-
dual Peptide Strands. Biopolymers 2006, 84, 90–96.
(3) (a) Peris, G.; Jakobsche, C. E.; Miller, S. J. Aspartate-Catalyzed
Asymmetric Epoxidation Reactions. J. Am. Chem. Soc. 2007,
129, 8710–8711. (b) Jakobsche, C. E.; Peris, G.; Miller, S. J. Functional
Analysis of an Aspartate-Based Epoxidation Catalyst with Amide-to-
Alkene Peptidomimetic Catalyst Analogues. Angew. Chem., Int. Ed. 2008,
47, 6707–6711.
(4) For selected reviews and recent advances involving catalytic
asymmetric epoxidation, see:(a) Johnson, R. A.; Sharpless, K. B. Addi-
tion Reactions with Formation of CarbonꢀOxygen Bonds: (ii) Asym-
metric Methods of Epoxidation. In Comprehensive Organic Synthesis;
Trost, B. M., Ed.; Pergamon: New York, 1991; Vol. 7, p 389. (b)
Jacobsen, E. N.; Wu, M. H. Epoxidation of Alkenes Other Than Allylic
Alcohols. In Comprehensive Asymmetric Catalysis II; Jacobsen, E. N.,
Pfaltz, A., Yamamoto, H., Eds.; Springer-Verlag: Berlin, 1999, p 649. (c)
Aggarwal, V. K.; Winn, C. L. Catalytic, Asymmetric Sulfur Ylide-
Mediated Epoxidation of Carbonyl Compounds: Scope, Selectivity,
and Applications in Synthesis. Acc. Chem. Res. 2004, 37, 611–620. (d)
Xia, Q. H.; Ge, H. Q.; Liu, Z. M.; Su, K. X. Advances in Homogeneous
and Heterogeneous Catalytic Asmmetric Epoxidation. Chem. Rev. 2005,
(11) (a) Copeland, G. T.; Miller, S. J. A Chemosensor-Based
Approach to Catalyst Discovery in Solution and on Solid Support.
325
dx.doi.org/10.1021/co200010v |ACS Comb. Sci. 2011, 13, 321–326