Journal of the American Chemical Society
ARTICLE
room temperature for 4 h, the white precipitate was removed by filtration. The
filtrate was washed with water (2ꢁ 10 mL) and brine (5 mL) and then dried
over anhydrous MgSO4. The solvent was evaporated to give a yellow oil that
was purified by flash chromatography (silica gel, 10:1 hexanes/EtOAc) to
afford the title compound as a clear oil (6:1 mixture of E/Z isomers, 293 mg,
98%). Characterization details are provided in the Supporting Information.
Microwave Irradiation Experiments. Microwave irradiation
experiments were carried out using a Discover microwave reactor from
CEM Corporation. All experiments were performed in sealed tubes
(capacity 10 mL) under an argon atmosphere utilizing microwave
irradiation of 300 W. The temperature was ramped from room
temperature to 150 °C in 1 min. Once this temperature was reached,
the reaction mixture was held at 150 °C for 60 min.
Sci.U.S.A. 1998, 95, 3489–3494. (f) Maret, W. Proc. Natl. Acad. Sci. U.S.A.
1994, 91, 237–241.
(4) Song, C. Catal. Today 2003, 86, 211–263.
(5) Smith, B. M. Chem. Soc. Rev. 2008, 37, 470–478.
(6) (a) Prokopcovꢀa, H.; Kappe, O. C. Angew. Chem., Int. Ed. 2009,
48, 2276–2286. (b) Dubbaka, S. R.; Vogel, P. Angew. Chem., Int. Ed.
2005, 44, 7674–7684.
(7) Coyle, P.; Philcoxa, J. C.; Carey, L. C.; Rofea, A. M. Cell. Mol. Life
Sci. 2002, 59, 627–647.
(8) Maret, W.; Vallee, B. L. Proc. Natl. Acad. Sci. U.S.A. 1998,
95, 3478–3482.
(9) Maret, W. Neurochem. Int. 1995, 27, 111–117.
€
(10) Zangger, K.; Oz, G.; Haslinger, E.; Kunert, O.; Armitage, I. M.
FASEB 2001, 15, 1303–1305.
Representative Procedure for Cu-Catalyzed Desulfitative
Couplings. To a dry microwave tube (10 mL) equipped with a stirring
bar was added S-2-(1-(methoxyimino)ethyl)phenyl 4-methylbenzothio-
ate (3a) (30 mg, 0.1 mmol), 4-chlorophenyl boronic acid (19 mg, 0.12
mmol), and CuMeSal (4 mg, 0.02 mmol). The reaction tube was flushed
with argon and sealed with a septum. Anhydrous and degassed DMF
(1 mL) was added, and the mixture was subsequently heated in a
microwave reactor at 150 °C for 1 h. After it was cooled, the reaction
mixture was diluted with diethyl ether (10 mL). The reaction mixture
was washed with water (2 ꢁ 5 mL) and brine (3 mL) and dried over
anhydrous MgSO4. The solvent was removed at reduced pressure, and
the crude product was purified by preparative plate silica gel chroma-
tography using hexanes/EtOAc (4:1) as the eluent. 4-Chloro-40-methyl-
benzophenone was obtained as a white solid (21 mg, 91%).
Characterization details are provided in the Supporting Information.
(11) (a) Phipps, R. J.; Gaunt, M. J. Science (Washington, D.C.) 2009,
323, 1593–1597. (b) Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev.
2008, 108, 3054–3131. (c) Alexakis, A.; B€ackvall, J. E.; Krause, N.;
Pꢁamies, O.; Diꢀeuez, M. Chem. Rev. 2008, 108, 2796–2823. (d) Beletskaya,
I. P.; Cheprakov, A. V. Coord. Chem. Rev. 2004, 248, 2337–2364. (e) Ley,
S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400–5449.
(12) Musaev, D. G.; Liebeskind, L. S. Organometallics 2009,
28, 4639–4642.
(13) (a) Villalobos, J. M.; Srogl, J.; Liebeskind, L. S. J. Am. Chem. Soc.
2007, 129, 15734–15735. (b) Liebeskind, L. S.; Yang, H.; Li, H. Angew.
Chem., Int. Ed. 2009, 48, 1417–1421.
(14) (a) Li, H.; Yang, H.; Liebeskind, L. S. Org. Lett. 2008,
10, 4375–4378. (b) Egi, M.; Liebeskind, L. S. Org. Lett. 2003,
5, 801–802. (c) Alphonse, F.-A.; Suzenet, F.; Keromnes, A.; Lebret,
B.; Guillaumet, G. Org. Lett. 2003, 5, 803–805.
(15) Sigel, H.; Scheller, K. H.; Rheinberger, V. M.; Fischer, B. E.
J. Chem. Soc., Dalton Trans. 1980, 1022–1028.
(16) (a) Liebeskind, L. S.; Yang, H.; Li, H. Angew. Chem., Int. Ed.
2009, 48, 1417–1421. (b) Yang, H.; Liebeskind, L. S. Org. Lett. 2007,
9, 2993–2995. (c) Yang, H.; Li, H.; Wittenberg, R.; Egi, M.; Huang, W.;
Liebeskind, L. S. J. Am. Chem. Soc. 2007, 129, 1132–1140. (d)
Rodríguez-Cendejas, C. G.; Liebeskind, L. S.; Pe~na-Cabrera, E. ARKI-
VOC 2005, 6, 250–256. (e) Fausett, B. W.; Liebeskind, L. S. J. Org. Chem.
2005, 70, 4851–4853. (f) Yu, Y.; Liebeskind, L. S. J. Org. Chem. 2004,
69, 3554–3557. (g) Wittenberg, R.; Srogl, J.; Egi, M.; Liebeskind, L. S.
Org. Lett. 2003, 5, 3033–3035. (h) Savarin, C.; Srogl, J.; Liebeskind, L. S.
Org. Lett. 2000, 2, 3229–3331. (i) Liebeskind, L. S.; Srogl, J. J. Am. Chem.
Soc. 2000, 122, 11260–11261.
(17) Savarin, C.; Srogl, J.; Liebeskind, L. S. Org. Lett. 2001, 3, 91–93.
(18) Liu, S.; Yu, Y.; Liebeskind, L. S. Org. Lett. 2007, 9, 1947–1950.
(19) (a) Falck, J. R.; Bhatt, R. K.; Ye, J. J. Am. Chem. Soc. 1995,
117, 5973–5982. (b) Allred, G. D.; Liebeskind, L. S. J. Am. Chem. Soc.
1996, 118, 2748–2749. (c) Chan, D. M. T.; Lam, P. Y. S. In Boronic Acids
- Preparation, Applications in Organic Synthesis and Medicine; Hall, D. G.,
Ed.; Wiley-VCH: Weinheim, Germany, 2005, p 205ꢀ240; (d) Falck,
J. R.; Patel, P. K.; Bandyopadhyay, A. J. Am. Chem. Soc. 2007,
129, 790–793.
(20) Breit, B.; Schmidt, Y. Chem. Rev. 2008, 108, 2928–2951.
(21) As a control experiment, the 2-mercaptoacetophenone O-
methyloxime was treated with 1 equiv of Cu(I) 3-methylsalicylate in
dry, degassed EtOAc under argon. The resulting yellow precipitate was
filtered and dried under vacuum. This yellow solid was placed in a flame-
dried test tube with dry, degassed DMF under argon and monitored by
TLC for formation of the benzoisothiazole. No product was observed
after 2 h at room temperature nor after 2 h at 40 °C. After 2 h at 60 °C a
trace of product was noted. The reaction was then warmed to 80 °C
where product formation ensued. After 24 h at 80 °C the reaction
mixture was diluted with water and extracted into diethyl ether, and the
product residue was purified by preparative silica gel chromatography.
The benzoisothiazole was isolated in 81% yield.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures,
b
synthesis, and characterization of all new compounds and
scanned spectra. This material is available free of charge via the
’ AUTHOR INFORMATION
Corresponding Author
Present Addresses
†Department of Chemistry, University of Chicago, 5735 South
Ellis Avenue, Chicago, IL 60637.
’ ACKNOWLEDGMENT
The National Institutes of General Medical Sciences, DHHS,
supported this investigation through Grant No. GM066153. G.
Allred of Synthonix provided the boronic acids, organostan-
nanes, and Cu salts used in our studies. E. Garnier-Amblard and
H. Li provided critical proofreading and suggestions.
’ REFERENCES
(1) (a) Waldron, K. J.; Robinson, N. J. Nat. Rev. 2009, 6, 25–35. (b)
Tottey, S.; Harvie, D., R.; Robinson, N. J. Acc. Chem. Res. 2005,
38, 775–783.
(2) Huffman, D. L.; O’Halloran, T. V. Annu. Rev. Biochem. 2001,
70, 677–701.
(3) (a) Maret, W. Biochemistry 2004, 43, 3301–3309. (b) Chen, Y.;
Irie, Y.; Keung, W. M.; Maret, W. Biochemistry 2002, 41, 8360–8367. (c)
Hartmann, H. J.; Weser, U. BioMetals 2000, 13, 153–156. (d) Jacob, C.;
Maret, W.; Vallee, B. L. Biochem. Biophys. Res. Commun. 1998,
248, 569–573. (e) Jacob, C.; Maret, W.; Vallee, B. L. Proc. Natl. Acad.
(22) (a) Crawford, R. J.; Woo, C. J. Org. Chem. 1966, 31, 1655–1656.
(b) Meth-Cohn, O.; Tarnowski, B. Synthesis 1978, 58–60. (c) Lawson,
A. J. Phosphorus, Sulfur Silicon Relat. Elem. 1982, 12, 357–367. (d)
McKinnon, D. M.; Kingsley, R. L. Can. J. Chem. 1988, 66, 1405–1409.
6409
dx.doi.org/10.1021/ja200792m |J. Am. Chem. Soc. 2011, 133, 6403–6410