Journal of the American Chemical Society
COMMUNICATION
carborhodation would also furnish intermediate M. However,
these mechanisms are unlikely because they involve an unusual
attack of the (alkenyl)rhodium carbon at the carbonyl oxygen
and hydrorhodation not carborhodation which is common in the
hydroacylation of alkynylaldehydes.15,16
The ligand- and substituent-controlled formation of ester 3 or
ketone 4 might be explained as follows, although the precise
mechanism cannot be determined at the present stage. Increasing
the steric bulk of R1 of 1 and/or R2 of 2 would favor the
formation of intermediate L over intermediate E due to steric
repulsion between substituents R1 and R2. Use of the biaryl
bisphosphine ligand with the small dihedral angle increases the
steric repulsion between R1 of 1 and the equatorial phenyl group
of the ligand, which would also favor the formation of sterically
less demanding intermediate L over intermediate E.
In conclusion, it has been established that a cationic Rh(I)/(R)-
H8-BINAP or (R)-Segphos complex catalyzes two unprecedented
modes of cyclizations of heteroatom-linked γ-alkynylaldehydes with
acyl phosphonates via CꢀP or CꢀH bond cleavage with out-
standing enantioselectivity. These two different reaction pathways
depend on the dihedral angles of the ligands and the substitutents on
both γ-alkynylaldehydes and acyl phosphonates. Future studies will
focus on elucidating the reaction mechanism and expanding the
reaction scope to include chelating carbonyl compounds possessing a
variety of heteroatomꢀcarbonyl bonds.
G. M.; Montgomery, J. J. Am. Chem. Soc. 2005, 127, 13156.(f) Baxter,
R. D.; Montgomery, J. J. Am. Chem. Soc. 2011, 133, 5728.
(3) Rh-catalyzed reactions: (a) Ojima, I.; Tzamarioudaki, M.; Tsai,
C.-Y. J. Am. Chem. Soc. 1994, 116, 3643. (b) Bennacer, B.; Fujiwara, M.;
Lee, S.-Y.; Ojima, I. J. Am. Chem. Soc. 2005, 127, 17756. (c) Rhee, J. U.;
Krische, M. J. J. Am. Chem. Soc. 2006, 128, 10674. (d) Rhee, J. U.; Jones,
R. A.; Krische, M. J. Synthesis 2007, 3427.
(4) Ru-catalyzed reaction: (a) Patman, R. L.; Chaulagain, M. R.;
Williams, V. M.; Krische, M. J. J. Am. Chem. Soc. 2009, 131, 2066.
Ti-catalyzed reaction: (b) Crowe, W. E.; Rachita, M. J. J. Am. Chem. Soc.
1995, 117, 6787.
(5) Tanaka, R.; Noguchi, K.; Tanaka, K. J. Am. Chem. Soc. 2010,
132, 1238.
(6) Transition-metal-catalyzed syntheses of cyclic allylic alcohols
with tetrasubstituted alkene component via alkylative or arylative
cyclizations of γ-alkynylaldehydes have been reported. Ni: (a) Oblinger,
E.; Montgomery, J. J. Am. Chem. Soc. 1997, 119, 9065. (b) Ni, Y.;
Amarasinghe, K. K. D.; Montgomery, J. Org. Lett. 2002, 4, 1743. (c)
Patel, S. J.; Jamison, T. F. Angew. Chem., Int. Ed. 2003, 42, 1364. (d)
Patel, S. J.; Jamison, T. F. Angew. Chem., Int. Ed. 2004, 43, 3941. Rh: (e)
Shintani, R.; Okamoto, K.; Otomaru, Y.; Ueyama, K.; Hayashi, T. J. Am.
Chem. Soc. 2005, 127, 54. (f) Miura, T.; Shimada, M.; Murakami, M.
Synlett 2005, 667. (g) Matsuda, T.; Makino, M.; Murakami, M. Angew.
Chem., Int. Ed. 2005, 44, 4608. (h) Miura, T.; Shimada, M.; Murakami,
M. Angew. Chem., Int. Ed. 2005, 44, 7598. (i) Miura, T.; Shimada, M.;
Murakami, M. Tetrahedron 2007, 63, 6131. Pd: (j) Tsukamoto, H.;
Ueno, T.; Kondo, Y. J. Am. Chem. Soc. 2006, 128, 1406. Fe: (k) Hojo,
M.; Murakami, Y.; Aihara, H.; Sakuragi, R.; Baba, Y.; Hosomi, A. Angew.
Chem., Int. Ed. 2001, 40, 621. Mn: (l) Tang, J.; Okada, K.; Shinokubo,
H.; Oshima, K. Tetrahedron 1997, 53, 5061. (m) Yorimitsu, H.; Tang, J.;
Okada, K.; Shinokubo, H.; Oshima, K. Chem. Lett. 1998, 11.
(7) Sm-mediated three-component coupling of acyl phosphonates
and two carbonyl compounds via direct CꢀP bond activation: (a)
Takaki, K.; Itono, Y.; Nagafuji, A.; Naito, Y.; Shishido, T.; Takehira, K.;
Makioka, Y.; Taniguchi, Y.; Fujiwara, Y. J. Org. Chem. 2000, 65, 475.
Cleavage of the CꢀP bond of acyl phosphonates by Yb and Sm: (b)
Taniguchi, Y.; Fujii, N.; Takaki, K.; Fujiwara, Y. J. Organomet. Chem.
1995, 491, 173.
’ ASSOCIATED CONTENT
S
Supporting Information. Procedures, characterization
b
data, and X-ray crystallographic information. This material is
’ AUTHOR INFORMATION
Corresponding Author
(8) In the Rh-catalyzed hydrogenation of acyl phosphonates, the
cleavage of the CꢀP bond is predominant over the desired reduction of
the carbonyl group: Goulioukina, N. S.; Bondarenko, G. N.; Bogdanov,
A. V.; Gavrilov, K. N.; Beletskaya, I. P. Eur. J. Org. Chem. 2009, 510.
(9) Shimizu, H.; Nagasaki, I.; Saito, T. Tetrahedron 2005, 61, 5405.
(10) We reported that the cationic Rh(I)/H8-BINAP complex can
catalyze enantio- and diastereoselective [2þ2þ2] cycloaddition of 1,6-
enynes with ketoesters: Tanaka, K.; Otake, Y.; Sagae, H.; Noguchi, K.;
Hirano, M. Angew. Chem., Int. Ed. 2008, 47, 1312.
’ ACKNOWLEDGMENT
This work was supported partly by Grants-in-Aid for Scientific
Research (Nos. 20675002 and 23105512) from MEXT, Japan.
We deeply appreciate Takasago International Corp. for the
gift of H8-BINAP and Segphos, Umicore for generous support
in supplying a rhodium complex, and reviewers for valuable
suggestions regarding the reaction mechanism.
(11) Nakanishi, K.; Kotani, S.; Sugiura, M.; Nakajima, M. Tetrahe-
dron 2008, 64, 6415.
(12) Cationic Rh(I) complex-catalyzed [2þ2þ2] and [4þ2] cy-
cloadditions involving acyl phosphonates: (a) Tanaka, K.; Tanaka, R.;
Nishida, G.; Hirano, M. Synlett 2008, 2017. (b) Tanaka, K.; Tanaka, R.;
Nishida, G.; Noguchi, K.; Hirano, M. Chem. Lett. 2008, 37, 934.
(13) Alternatively, the formation of intermediate G via the coupling
of Rh with 1 and 2 to generate dioxarhodacycle followed by alkyne
insertion cannot be excluded. Ni-catalyzed Tishchenko reactions pre-
sumably through dioxanickelacycles: (a) Ogoshi, S.; Hoshimoto, Y.;
Ohashi, M. Chem. Commun. 2010, 46, 3354. (b) Hoshimoto, Y.; Ohashi,
M.; Ogoshi, S. J. Am. Chem. Soc. 2011, 133, 4668.
(14) Cationic Rh(I) complex-catalyzed E/Z isomerization of R,
β-unsaturated carbonyl compounds: Tanaka, K.; Shoji, T.; Hirano, M.
Eur. J. Org. Chem. 2007, 2687.
(15) Cationic Rh(I)/BINAP complex-catalyzed intramolecular hy-
droacylation (and subsequent olefin isomerization) of methylene-linked
γ-alkynylaldehydes: Takeishi, K.; Sugishima, K.; Sasaki, K.; Tanaka, K.
Chem. Eur. J. 2004, 10, 5681.
’ REFERENCES
(1) Reviews: (a) Montgomery, J. Acc. Chem. Res. 2000, 33, 467. (b)
Ikeda, S. Angew. Chem., Int. Ed. 2003, 42, 5120. (c) Montgomery, J.
Angew. Chem., Int. Ed. 2004, 43, 3890. (d) Jang, H.-Y.; Krische, M. J. Acc.
Chem. Res. 2004, 37, 653.(e) Fujiwara, M.; Ojima, I. In Modern Rhodium-
Catalyzed Organic Reactions; Evans, P. A., Ed.; Wiley-VCH: Weinheim,
2005; p 129. (f) Montgomery, J.; Sormunen, G. J. Top. Curr. Chem.
2007, 279, 1. (g) Miura, T.; Murakami, M. Chem. Commun. 2007, 217.
(h) Skucas, E.; Ngai, M.-Y.; Komanduri, V.; Krische, M. J. Acc. Chem. Res.
2007, 40, 1394. (i) Moslin, R. M.; Miller-Moslin, K.; Jamison, T. F.
Chem. Commun. 2007, 4441. (j) Jeganmohan, M.; Cheng, C. H. Chem.
Eur. J. 2008, 14, 10876.
(2) Ni-catalyzed reactions: (a) Oblinger, E.; Montgomery, J. J. Am.
Chem. Soc. 1997, 119, 9065. (b) Tang, X.-Q.; Montgomery, J. J. Am.
Chem. Soc. 1999, 121, 6098. (c) Tang, X.-Q.; Montgomery, J. J. Am.
Chem. Soc. 2000, 122, 6950. (d) Mahandru, G. M.; Liu, G.; Montgomery,
J. J. Am. Chem. Soc. 2004, 126, 3698. (e) Knapp-Reed, B.; Mahandru,
(16) Review of transition-metal-catalyzed hydroacylation: Willis,
M. C. Chem. Rev. 2010, 110, 725.
6921
dx.doi.org/10.1021/ja201337x |J. Am. Chem. Soc. 2011, 133, 6918–6921