ORGANIC
LETTERS
2011
Vol. 13, No. 9
2448–2451
N-Bromosuccinimide Initiated One-Pot
Synthesis of Imidazoline
Ling Zhou, Jing Zhou, Chong Kiat Tan, Jie Chen, and Ying-Yeung Yeung*
Department of Chemistry, National University of Singapore, 3 Science Drive 3,
Singapore 117543
Received March 15, 2011
ABSTRACT
A novel cationic Br initiated one-pot imidazoline synthesis has been developed using olefin, nitrile, amine, and N-bromosuccinimide. The olefinic
substrates and the nitrile partners can be flexibly varied to achieve a range of imidazoline derivatives.
Nitrogen containing heterocyclic compounds are of great
interest in many areas.1 Important examples include ami-
dines and imidazolines; these compounds are the funda-
mental units of natural products,2 biologically active mol-
ecules,3 organocatalysts,4 and metal complexation ligands.5
In particular, imidazolines have attracted much attention
as they can easily be transformed into imidazoles which are
well-known scaffolds that appear in several highly signifi-
cant biomolecules.6 Moreover, imidazolines can be hydro-
lyzed to yield the 1,2-diamine which is often used for the
synthesis of organocatalysts and the metal complexation
ligands.7 Many research endeavors have been dedicated to
the development of efficient and environmentally benign
approaches to the synthesis of these compounds over the
past few decades.3,8 However, apart from long and ineffi-
cient synthetic sequences, potentially hazardous azide
reagents and/or metallic reagents are commonly used to
introduce the nitrogen functionalities in the literature
processes which hinder their application in the manufac-
turing sector.9
On the other hand, the Ritter-type reactions, which
involve anamine-captured nitronium intermediate, appear
to offer an attractive strategy for the construction of
imidazoline. To our surprise, sporadic cases have been
reported using this approach, the results returned show-
ing limited scope, low yielding reactions, and/or low
selectivity. In addition, a catalyst is usually required to
(1) (a) Kemp, J. E. In Comprehensive Organic Synthesis, Vol. 7; Trost,
B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; pp 469À513. (b)
Pearson, W. H.; Lian, B. W.; Bergmeier, S. C. In Comprehensive
Heterocyclic Chemistry II, Vol. 1A; Padwa, A., Ed.; Pergamon Press:
Oxford, U.K., 1996, pp 1À60. (c) Rai, K. M. L.; Hassner, A. In
Comprehensive Heterocyclic Chemistry II, Vol. 1A; Padwa, A., Ed.;
Pergamon Press: Oxford, U.K., 1996; pp 61À96. (d) Grimmett, M. R.
In Comprehensive Heterocyclic Chemistry II, Vol. 3; Katritzky, A. R.,
Scriven, E. F. V., Eds.; Pergamon: Oxford, 1996; pp 77À220.
(2) (a) Kumamoto, T. In Superbases for Organic Synthesis: Guani-
dines, Amidines, Phosphazenes and Related Organoctalysts; Ishikawa, I.,
Ed.; John Wiley & Sons Press: West Sussex, U.K., 2009; pp 295À313. (b)
Berlinck, R. G. S.; Burtoloso, A. C. B.; Kossuga, M. H. Nat. Prod. Rep.
2008, 25, 919–954. (c) Berlinck, R. G. S.; Kossuga, M. H. Nat. Prod. Rep.
2005, 22, 516–550. (d) Nagasawa, K.; Hashimoto, Y. Chem. Record
2003, 3, 201–211.
(3) (a) Bellina, F.; Cauteruccio, S.; Rossi, R. Tetrahedron 2007, 63,
4571–4624. (b) De Luca, L. Curr. Med. Chem. 2006, 13, 1–23.
(4) Ahmad, S. M.; Braddock, D. C.; Cansell, G.; Hermitage, S. A.;
Redmond, J. M.; White, A. J. P. Tetrahedron Lett. 2007, 48, 5948–5952.
(5) Edelmann, F. T. Adv. Organomet. Chem. 2008, 57, 183–352.
(6) (a) Haneda, S.; Okui, A.; Ueba, C.; Hayashi, M. Tetrahedron
2007, 63, 2414–2417. (b) Nicolaou, K. C.; Mathison, C. J. N.;
Montagnon, T. Angew. Chem., Int. Ed. 2003, 42, 4077–4082. (c)
Mohammadpoor-Baltork, I.; Zolfigol, M. A.; Abdollahi-Aibeik, M.
Synlett 2004, 2803–2805. (d) Ishihara, M.; Togo, H. Synlett 2006, 227–
230. (e) Huh, D. H.; Ryu, H.; Kim, Y. G. Tetrahedron 2004, 60, 9857–
9862. (f) Bellina, F.; Cauteruccio, S.; Fiore, A. D.; Marchetti, C.; Rossi,
R. Tetrahedron 2008, 64, 6060–6072.
(7) (a) Lucet, D.; Le Gall, T.; Mioskowski, C. Angew. Chem., Int. Ed.
1998, 37, 2580–2627. (b) Cardona, F.; Goti, A. Nature Chem. 2009, 1,
269–275.
(8) (a) Crouch, R. D. Tetrahedron 2009, 65, 2387–2397. (b) Gandhi,
S.; Bisai, A.; Prasad, B. A. B.; Singh, V. K. J. Org. Chem. 2007, 72, 2133–
ꢀ
ꢀ
2142. (c) Concellon, J. M.; Riego, E.; Suarez, J. R.; Garcı
´
a-Granda, S.;
Dıaz, M. R. Org. Lett. 2004, 6, 4499–4502. (d) Li, G.; Saibabu Kotti,
´
S. R. S.; Timmons, C. Eur. J. Org. Chem. 2007, 2745–2758.
(9) Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.;
Leazer, J. L.; Linderman, R. J., Jr.; Lorenz, K.; Manley, J.; Pearlman,
B. A.; Wells, A.; Zaks, A.; Zhang, T. Y. Green Chem. 2007, 9, 411–420.
r
10.1021/ol2006902
Published on Web 04/12/2011
2011 American Chemical Society