In conclusion, a new iridium(III) complex incorporating the
novel pphen ligand has been prepared that exhibits intra-
molecular p-stacking between a pendant phenyl group and a
cyclometallated ppy ligand. This interaction results in
supramolecular cage formation in both the ground and excited
states. When the new complex is used as the active component
in LECs, the device exhibits a significant enhancement
of stability compared to LECs using the reference [Ir(ppy)2-
(phen)][PF6] complex. Additionally, from a comparison with
device stabilities observed in LECs using ionic supramolecularly-
caged bpy-based iridium(III) complexes it appears that the
3
metal–ligand bond length in the MC states is an important
stability determining factor.
Fig. 3 Top: electron density contours (0.03 e Bohrꢁ3) calculated for
the unoccupied eg molecular orbital of [Ir(ppy)2(phen)]+ showing
s-antibonding interactions along the vertical Nppy–Ir–Nppy axis.
Bottom: minimum-energy structures calculated for the 3MC states of
[Ir(ppy)2(phen)]+ (left) and [Ir(ppy)2(pphen)]+ (right). R1 and R2 are
the optimized Ir–Nppy bond length values.
We would like to thank the European Union (CELLO,
STRP 248043), the Spanish Ministry of Science and Innovation
(MICINN) (MAT2007-61584, CTQ2009-08790 and Consolider-
Ingenio CSD2007-00010), the Swiss National Science
Foundation, and the Swiss National Center of Competence
in Research ‘‘Nanoscale Science’’. R.D.C. acknowledges the
support of a FPU grant of the MICINN. Dr Silvia Schaffner is
acknowledged for the structural determination.
This makes the complex more robust in the excited emitting
state and reduces the possibility for ligand-exchange reactions
that would lead to the degradation of the complex.
Notes and references
3MC states result from the excitation of one electron from
the occupied t2g (dp) HOMO to the unoccupied eg (ds*)
orbitals of the metal9 and are assumed to be the origin of
complex instability in [Ru(bpy)3]2+ devices.2 These states are
characterized by s-antibonding interactions between the metal
and the nitrogens of the ppy ligands (Fig. 3, top). Therefore,
the population of the 3MC states leads to the elongation of the
Ir–Nppy bonds, which in the case of 2 evolve from typical
values of 2.08 A in S0 to 2.51 A as it is also found for
[Ir(ppy)2(bpy)]+,4b and to the virtual decoordination of the
two Nppy atoms (Fig. 3, bottom). The rupture of the metal–
ligand bonds and consequently the opening of the complex
1 (a) J. D. Slinker, J. Rivnay, J. S. Moskowitz, J. B. Parker, S. Bernhard,
H. D. Abruna and G. G. Malliaras, J. Mater. Chem., 2007, 17, 2976;
(b) J. Slinker, D. Bernards, P. L. Houston, H. D. Abruna, S. Bernhard
and G. G. Malliaras, Chem. Commun., 2003, 2392.
2 (a) J. D. Slinker, J.-S. Kim, S. Flores-Torres, J. H. Delcamp,
H. D. Abruna, R. H. Friend and G. G. Malliaras, J. Mater. Chem.,
2007, 17, 76; (b) L. J. Soltzberg, J. Slinker, S. Flores-Torres,
D. Bernards, G. G. Malliaras, H. D. Abruna, J. S. Kim,
R. H. Friend, M. D. Kaplan and V. Goldberg, J. Am. Chem.
Soc., 2006, 128, 7761; (c) G. Kalyuzhny, M. Buda, J. McNeill,
P. Barbara and A. J. Bard, J. Am. Chem. Soc., 2003, 125, 6272;
(d) J. Van Hounte and R. J. Watts, J. Am. Chem. Soc., 1976, 98,
4853; (e) D. W. Thompson, J. F. Wishart, B. S. Brunschwig and
N. Sutin, J. Phys. Chem. A, 2001, 105, 8117.
3 (a) H. J. Bolink, E. Coronado, R. D. Costa, E. Ortı, M. Sessolo,
´
3
enhance the degradation of the complex in the excited MC
S. Graber, K. Doyle, M. Neuburger, C. E. Housecroft and
E. C. Constable, Adv. Mater., 2008, 20, 3910; (b) S. Graber,
K. Doyle, M. Neuburger, C. E. Housecroft, E. C. Constable,
states. It is well established in pbpy-based iridium(III)
complexes that the intramolecular p-stacking prevents the
lengthening of the Ir–Nppy bond of the ppy ligand involved
in that interaction.3 The pendant phenyl ring exerts a cage
effect that restricts the opening of the structure of the complex
in the excited 3MC state. This makes the complex more robust
reducing the possibility of degradation reactions and leads to
long-lived LEC devices.3 In contrast to the pbpy-based
complexes, the molecular structure calculated for 1 in the
3MC state is similar to that computed for 2 (Fig. 3, bottom).
The p-stacking interaction is present in 1 (3.71 A) but it does
not prevent the weakening of the Ir–Nppy bonds (B2.50 A)
and the opening of the complex. This is most likely the
explanation for the lower stability observed for LECs
using complex 1 compared with that obtained for devices
incorporating pbpy-based complexes. Additionally, the 3MC
states are calculated after geometry relaxation to lie approxi-
mately 0.46 eV above the lowest energy T1 state both for 1 and 2.
Hence, the probability of degradation reactions should be similar
in both complexes. However, the attached phenyl group is a clear
steric impediment to the entrance of nucleophiles, which explains
why the stability of LEC devices based on 1 is enhanced
compared to that observed in LECs using 2.
R. D. Costa, E. Ortı
´
Soc., 2008, 130, 14944; (c) R. D. Costa, E. Ortı
, D. Repetto and H. J. Bolink, J. Am. Chem.
, H. J. Bolink,
S. Graber, C. E. Housecroft, M. Neuburger, S. Schaffner and
´
E. C. Constable, Chem. Commun., 2009, 2029; (d) R. D. Costa,
E. Ortı
E. C. Constable, Adv. Funct. Mater., 2010, 20, 1511; (e) R. D. Costa,
E. Ortı, H. J. Bolink, S. Graber, C. E. Housecroft and E. C. Constable,
´
, H. J. Bolink, S. Graber, C. E. Housecroft and
´
J. Am. Chem. Soc., 2010, 132, 5978.
4 (a) H. J. Bolink, L. Cappelli, S. Cheylan, E. Coronado, R. D. Costa,
N. Lardie
´
5032; (b) R. D. Costa, E. Ortı
s, M. K. Nazeeruddin and E. Ortı
´
´
, J. Mater. Chem., 2007, 17,
, H. J. Bolink, S. Graber, S. Schaffner,
M. Neuburger, C. E. Housecroft and E. C. Constable, Adv. Funct.
Mater., 2009, 19, 3456; (c) R. D. Costa, P. M. Viruela, H. J. Bolink and
E. Ortı, THEOCHEM, 2009, 912, 21; (d) C. Dragonetti, L. Falciola,
´
P. Mussini, S. Righetto, D. Roberto, R. Ugo, A. Valore, F. De
Angelis, S. Fantacci, A. Sgamellotti, M. Ramon and M. Muccini,
Inorg. Chem., 2007, 46, 8533.
5 M. Nonoyama, Bull. Chem. Soc.Jpn., 1974, 47, 767.
6 (a) S. T. Parker, J. Slinker, M. S. Lowry, M. P. Cox, S. Bernhard
and G. G. Malliaras, Chem. Mater., 2005, 17, 3187; (b) R. D. Costa,
A. Pertegas, E. Ortı and H. J. Bolink, Chem. Mater., 2010, 22,
´ ´
1288.
7 CIE, 1933.
8 Q. Pei, G. Yu, C. Zhang, Y. Yang and A. J. Heeger, Science, 1995,
269, 1086.
9 F. Alary, J. L. Heully, L. Bijeire and P. Vicendo, Inorg. Chem., 2007,
46, 3154.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 3207–3209 3209