(e) M. M. Changalov, G. D. Ivanova, M. A. Rangelov, P. Acharya,
S. Acharya, N. Minakawa, A. Foeldesi, I. B. Stoineva,
V. M. Yomtova, C. D. Roussev, A. Matsuda, J. Chattopadhyaya
and D. D. Petkov, ChemBioChem, 2005, 6, 992; (f) T. M. Schmeing,
K. S. Huang, D. E. Kitchen, S. A. Strobel and T. A. Steitz, Mol. Cell,
2005, 20, 437; (g) T. M. Schmeing, K. S. Huang, S. A. Strobel and
T. A. Steitz, Nature, 2005, 438, 520; (h) M. D. Erlacher, K. Lang,
B. Wotzel, R. Rieder, R. Micura and N. Polacek, J. Am. Chem. Soc.,
2006, 128, 4453; (i) J. S. Weinger and S. A. Strobel, Biochemistry,
2006, 45, 5939; (j) M. V. Rodnina, M. Beringer and W. Wintermeyer,
Trends Biochem. Sci., 2007, 32, 20; (k) M. Erlacher, D. N. Wilson,
R. Micura and N. Polacek, Chem. Biol., 2008, 15, 485; (l) M. Koch,
Y. Huang and M. Sprinzl, Angew. Chem., Int. Ed., 2008, 47, 7242.
4 (a) V. I. Katunin, G. W. Muth, S. A. Strobel, W. Wintermeyer and
M. V. Rodnina, Mol. Cell, 2002, 10, 339; (b) R. Green and
J. R. Lorsch, Cell, 2002, 110, 665; (c) A. C. Seila, K. Okuda,
For 1–6, both, pKa values and differences are somewhat
underestimated by SPARC—most pronounced for Asn, Ala
and Gly (not Pro) 30-amides—which predicts a corresponding
median amide vs. ester difference of 0.19 pKa units. Column G
shows the accordingly derived (B ꢀ 0.31) intrinsic pKa values
for 30-esters at 20 1C (same compounds as D); cooling by 5 1C
means to increase pKa by 0.10–0.15 units.9,11 The apparent
a-amino pKa values of A-site bound aa-tRNA at 20 1C
(ꢁ0.04–0.2) are reproduced from ref. 9 in H.
S. Nu´ nez, A. F. Seila and S. A. Strobel, Biochemistry, 2005, 44,
4018; (d) K. Okuda, A. C. Seila and S. A. Strobel, Biochemistry,
2005, 44, 6675; (e) B. Zhang, Z. Tan, L. Gartenmann Dickson,
M. N. L. Nalam, V. W. Cornish and A. C. Forster, J. Am. Chem.
Soc., 2007, 129, 11316; (f) D. A. Kingery, E. Pfund, R. M. Voorhees,
K. Okuda, I. Wohlgemuth, D. E. Kitchen, M. V. Rodnina and
S. A. Strobel, Chem. Biol., 2008, 15, 493; (g) K. Okuda, T. Hirota,
D. A. Kingery and H. Nagasawa, J. Org. Chem., 2009, 74, 2609.
5 (a) A. Sievers, M. Beringer, M. V. Rodina and R. Wolfenden,
Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 7897; (b) M. Beringer,
C. Bruell, L. Xiong, P. Pfister, P. Bieling, V. I. Katunin,
The apparent basicities of aa-tRNA’s nucleophilic a-amino
groups that are reacting in the ribosome’s A site can differ by up
to 1.9 pKa units (for Asn- vs. Pro-tRNA).9 Given equimolar
total concentrations and a local pH 7.5, the nucleophiles of
a-amino-Asn : Pro thus appear neutral in a 3 : 1 molar ratio
([1 + 107.8ꢀpH]/[1 + 105.9ꢀpH], H) (ESIw). This study shows that,
within r0.2 pKa limits, the intrinsic basicities of the same
a-amino groups at 20 1C (G) compare well with earlier less
directly derived values9 and span about the same 1.8 pKa (B) as
that of A site-bound aa-tRNA. Molar ratios for neutral
(equimolar total) Asn : Pro a-amines in bulk water at pH 7.5
are 10 : 1 for 30-amides 2 : 3 (Fig. S1, ESIw) and 7–8 : 1 for
30-esters. FPro 4 sterically stands in for Pro 3 but its a-NH is as
weakly basic as that of Asn 2.
A. S. Mankin, E. C. Bottger and M. V. Rodnina, J. Biol. Chem.,
¨
2005, 280, 36065; (c) I. Wohlgemuth, S. Brenner, M. Beringer and
M. V. Rodnina, J. Biol. Chem., 2008, 283, 32229.
6 (a) A. Sievers, M. Beringer, M. V. Rodina and R. Wolfenden, Proc.
Natl. Acad. Sci. U. S. A., 2004, 101, 12397; (b) G. K. Schroeder and
R. Wolfenden, Biochemistry, 2007, 46, 4037.
7 (a) P. K. Sharma, Y. Xiang, M. Kato and A. Warshel, Biochemistry,
2005, 44, 11307; (b) S. Trobro and J. Aqvist, Proc. Natl. Acad. Sci.
U. S. A., 2005, 102, 12395; (c) S. Trobro and J. Aqvist, Biochemistry,
2006, 45, 7049; (d) A. Gindulyte, A. Bashan, I. Agmon, L. Massa,
A. Yonath and J. Karle, Proc. Natl. Acad. Sci. U. S. A., 2006, 103,
13327; (e) G. Wallin and J. Aqvist, Proc. Natl. Acad. Sci. U. S. A.,
2010, 107, 1888.
8 (a) M. V. Rodnina, R. Fricke and W. Wintermeyer, Biochemistry,
1994, 33, 12267; (b) T. Pape, W. Wintermeyer and M. V. Rodnina,
EMBO J., 1998, 17, 7490.
9 M. Johansson, K.-W. Ieong, S. Trobro, P. Strazewski, J. Aqvist,
M. Y. Pavlov and M. Ehrenberg, Proc. Natl. Acad. Sci. U. S. A.,
2010, 108, 79.
We thank Mans Ehrenberg and Anthony Foster for helpful
discussions. Financial support was provided by FP6 programme
Synthcells and COST Action CM0703 Systems Chemistry.
10 (a) A. Fersht, Structure and Mechanism in Protein Science: A Guide to
Enzyme Catalysis and Protein Folding, Freeman & Co, New York,
1999; (b) H. A. Sober, CRC Handbook of Biochemistry, 2nd edn, 1970.
11 (a) R. W. Hay and L. J. Porter, J. Chem. Soc. B, 1967, 1261;
(b) R. W. Hay and P. J. Morris, J. Chem. Soc. B, 1970, 1577.
12 (a) S. H. Hilal, S. W. Karickhoff and L. A. Carreira, Quant.
Struct.–Act. Relat., 1995, 14, 348; (b) A. C. Lee and G. M.
Crippen, J. Chem. Inf. Model., 2009, 49, 2013; (c) D. D. Perrin,
B. Dempsey and E. P. Serjeant, pKa Prediction for Organic Acids
and Bases, Chapman & Hall, New York, 1981.
13 (a) P. S. Miller, B. Purshotam and K. Lou-Sing, Nucleosides,
Nucleotides Nucleic Acids, 1993, 12, 785; (b) H. Aurup,
T. Tuschl, F. Benseler, J. Ludwig and F. Eckstein, Nucleic Acids
Res., 1994, 22, 20; (c) G. M. Cathey and S. J. Klebanoff, Biochim.
Biophys. Acta, 1967, 145, 806; (d) S. S. Narula and M. M. Dhingra,
Indian J. Biochem. Biophys., 1986, 23, 306; (e) S. S. Narula and
M. M. Dhingra, J. Biomol. Struct. Dyn., 1984, 2, 191.
Notes and references
z The synthesis and pH-dependent 1H NMR spectroscopic analysis of
1 and 7 were part of the PhD thesis of N. Q. Nguyen-Trung, 2003,
University of Basel, Switzerland.
y Prior to fitting and plotting, the to be analysed chemical shifts dH of
all compounds 1–8 were corrected for the pH dependence of the
internal standard (CH3)3SiCD2CD2COONa (TSP): dH(TSP)
ꢂ
0.00 ppm, pKa (TSP) = 5.00, via the Henderson–Hasselbalch equation
dH(pH) = 2.217 + {ꢀ2.217 ꢀ 2.236ꢃ10pHꢀ5.00/(1 + 10pHꢀ5.00)}.19 All
corrected datapoints dHa, dHb, dHg, dHd furnished pH profiles that are
pHꢀpKa
best fits for dH(pH) = dA + (dB ꢀ dA)ꢃ10pHꢀpK /(1 + 10
),
a
where the base lines (dA, dB) and the transition midpoint (pKa) served
as free fitting parameters.w
1 (a) M. Y. Pavlov, R. E. Watts, Z. Tan, V. W. Cornish,
M. Ehrenberg and A. C. Forster, Proc. Natl. Acad. Sci. U. S. A.,
2008, 106, 50; (b) M. Johansson, E. Bouakaz, M. Lovmar and
M. Ehrenberg, Mol. Cell, 2008, 30, 589.
2 S. Ledoux and O. C. Uhlenbeck, Mol. Cell, 2008, 31, 114.
3 (a) G. K. Das, D. Bhattacharyya and D. P. Burma, J. Theor. Biol.,
1999, 200, 193; (b) S. Dorner, C. Panuschka, W. Schmid and
A. Barta, Nucleic Acids Res., 2003, 31, 6536; (c) J. S. Weinger,
K. M. Parnell, S. Dorner, R. Green and S. A. Strobel, Nat. Struct.
Mol. Biol., 2004, 11, 1101; (d) M. D. Erlacher, K. Lang,
14 (a) R. W. Chambers and F. H. Carpenter, J. Am. Chem. Soc., 1955, 77,
1523; (b) R. E. Watts and A. C. Forster, Biochemistry, 2010, 49, 2177.
15 A. Kre˛zel and W. Bal, J. Inorg. Biochem., 2004, 98, 161.
˙
16 (a) H. Chapuis and P. Strazewski, Tetrahedron, 2006, 62, 12108;
(b) A. Charafeddine, W. Dayoub, H. Chapuis and P. Strazewski,
Chem.–Eur. J., 2007, 13, 5566; (c) B. Y. Michel, K. S.
Krishnakumar and P. Strazewski, Synlett, 2008, 246; (d) B. Y.
Michel and P. Strazewski, Chem.–Eur. J., 2009, 15, 6244.
17 J. T. Kazimierczuk, E. Darzynkiewicz and D. Shugar,
Biochemistry, 1976, 15, 2735.
N. Shankaran, B. Wotzel, A. Huttenhofer, R. Micura,
¨
A. S. Mankin and N. Polacek, Nucleic Acids Res., 2005, 33, 1618;
18 R. Sigel and H. Sigel, Acc. Chem. Res., 2010, 43, 974.
19 A. De Marco, J. Magn. Reson., 1977, 26, 527.
c
3292 Chem. Commun., 2011, 47, 3290–3292
This journal is The Royal Society of Chemistry 2011