ORGANIC
LETTERS
2011
Vol. 13, No. 9
2224–2227
Synthesis of Spirotetramates via a
DielsÀAlder Approach
Nicholas A. Butt and Christopher J. Moody*
School of Chemistry, University of Nottingham, University Park,
Nottingham NG7 2RD, U.K.
Received February 22, 2011
ABSTRACT
A study toward the unusual spirotetramate core of the pyrroindomycin antibiotics employing an intermolecular DielsÀAlder reaction of an exo-
methylene tetramic acid dienophile is described. The exo-methylene tetramate is readily synthesized from S-methylcysteine, and its reactivity as a
dienophile is compared with that of related dehydroalanine derivatives. An alternative approach to spirotetramates using a nitroalkene dienophile
is also reported.
Tetramic acids (pyrrolidine-2,4-diones) occur widely in
Nature as secondary metabolites produced by a wide range
of terrestrial and marine organisms.1À3 A large number of
these natural products carry acyl substituents at C-3, and
these 3-acyltetramates often have more pronounced bio-
logical activity, a fact ascribed to their potential ability to
act as ligands for metal ions and to mimic phosphate.2
3-Acyltetramates, which originate by mixed biosynthetic
routes involving nonribosomal peptide and polyketide
pathways, range in structural complexity from tenuazonic
acid 1,4À7 to equisetin 2,8À11 to cylindramide A 312À14
(Figure 1).
(1) Royles, B. J. L. Chem. Rev. 1995, 95, 1981–2001.
(2) Schobert, R. Naturwissenschaften 2007, 94, 1–11.
(3) Schobert, R.; Schlenk, A. Bioorg. Med. Chem. 2008, 16, 4203–
4221.
Figure 1. Some naturally occurring 3-acyltetramic acids.
(4) Rosett, T.; Sankhala, R. H.; Stickings, C. E.; Taylor, M. E. U.;
Thomas, R. Biochem. J. 1957, 67, 390–400.
(5) Harris, S. A.; Fisher, L. V.; Folkers, K. J. Med. Chem. 1965, 8,
478–&.
(6) Poncet, J.; Jouin, P.; Castro, B.; Nicolas, L.; Boutar, M.;
Gaudemer, A. J. Chem. Soc., Perkin Trans. 1 1990, 611–616.
(7) Schobert, R.; Jagusch, C.; Melanophy, C.; Mullen, G. Org.
Biomol. Chem. 2004, 2, 3524–3529.
However, it was the reports on the structurally unique
antibiotics, the pyrroindomycins 4,15,16 that captured our
attention. These compounds, isolated from fermentation
of culture LL42D005, a strain of Streptomyces rugosporus,
(8) Vesonder, R. F.; Tjarks, L. W.; Rohwedder, W. K.; Burmeister,
H. R.; Laugal, J. A. J. Antibiot. 1979, 32, 759–761.
(9) Turos, E.; Audia, J. E.; Danishefsky, S. J. J. Am. Chem. Soc. 1989,
111, 8231–8236.
(13) Cramer, N.; Laschat, S.; Baro, A.; Schwalbe, H.; Richter, C.
Angew. Chem., Int. Ed. 2005, 44, 820–822.
(14) Hart, A. C.; Phillips, A. J. J. Am. Chem. Soc. 2006, 128, 1094–
1095.
(10) Yuki, K.; Shindo, M.; Shishido, K. Tetrahedron Lett. 2001, 42,
2517–2519.
(11) Burke, L. T.; Dixon, D. J.; Ley, S. V.; Rodriguez, F. Org. Biomol.
Chem. 2005, 3, 274–280.
(12) Kanazawa, S.; Fusetani, N.; Matsunaga, S. Tetrahedron Lett.
(15) Ding, W. D.; Williams, D. R.; Northcote, P.; Siegel, M. M.;
Tsao, R.; Ashcroft, J.; Morton, G. O.; Alluri, M.; Abbanat, D.; Maiese,
W. M.; Ellestad, G. A. J. Antibiot. 1994, 47, 1250–1257.
(16) Singh, M. P.; Petersen, P. J.; Jacobus, N. V.; Mroczenskiwildey,
M. J.; Maiese, W. M.; Greenstein, M.; Steinberg, D. A. J. Antibiot. 1994,
47, 1258–1265.
1993, 34, 1065–1068.
r
10.1021/ol200477s
Published on Web 04/06/2011
2011 American Chemical Society