Please do not adjust margins
ChemComm
Page 3 of 3
DOI: 10.1039/C7CC01219E
ChemComm
COMMUNICATION
through hydrolysis and sulfonylation. Acidic hydrolysis of the disulfonate in these solvents by modulating the time of
diazide 19 and formate 20 provided 2,5-diazido-myo-inositol addition of azide nucleophile, we could synthesize 2-azido-
and 2-azido-myo-inositol respectively in quantitative yields myo-inositol and 5-azido-myo-inositol which are otherwise
(ESI). Apart from 5-azido-neo-inositol and 2,5-diazido-myo- difficult to synthesise from myo-inositol in one pot. We have
inositol, our methodology gave access to two mono-azido- also synthesized 5-azido-neo-inostiol and 2,5-diazido-myo-
myo-inositols by regioselective nucleophilic substitutions. inositol from myo-inositol-derived triflates. During this study,
Usual selective transformations in sugars and polyols exploit we have also synthesized several intermediates that can be
the nucleophilicity of hydroxyl groups.12 Here we have shown converted into OH-mutated myo-inositol analogs. This study
that difference in electrophilicities of substituted hydroxy on the selectivity between the nucleophilysis of axial-leaving
groups can also be used for selective reactions.
group versus equatorially placed leaving group and the
exploitation of the difference in kinetics to achieve different
regioselectivities would be of general interest.
Notes and references
1
(a) R. H. Michell, Nat. Rev. Mol. Cell. Biol., 2008, 9, 151; (b)
M. P. Thomas, S. J. Mills and B. V. L. Potter, Angew. Chem.
Int. Ed., 2016, 55, 1614.
2
3
E. Saxon and C. R. Bertozzi, Science, 2000, 287, 2007.
G. Brunn, A. H. Fauq, S. Chow, A. P. Kozikowski, A. Gallegos
and G. Powis, Cancer Chemother. Pharmacol., 1994, 35, 71.
(a) K. M. Sureshan, K. Ikeda, N. Asano and Y. Watanabe,
Tetrahedron Lett., 2004, 45, 8367; (b) K. M. Sureshan, K.
4
5
6
7
Ikeda, N. Asano and Y. Watanabe, Tetrahedron, 2008, 64
4072; (c) A. Trapero and A. Llebaria, ACS Med. Chem. Lett.
2011, , 614.
,
2
(a) L. Diaz and A. Delgado, Curr. Med. Chem. 2010, 17, 2393;
(b) A. Delgado, Eur. J. Org. Chem., 2008, 3893; (c) B. P.
Gurale, M. S. Shashidhar and R. G. Gonnade, J. Org. Chem.,
2012, 77, 5801; (d) F. Kudo and T. Eguchi, Chem. Rec. 2016,
16, 4.
(a) Q. R. Li, S. I. Kim, S. J. Park, H. R. Yang, A. R. Baek, I. S. Kim
and Y. H. Jung, Tetrahedron, 2013, 69, 10384; (b) S.
Mondal, A. Prathap, and K. M. Sureshan, J. Org. Chem., 2013,
78, 7690; (c) J. H. Dam and R. Madsen, Eur. J. Org. Chem.,
2009, 4666.
Scheme 3 Nucleophilyses of ditriflate 8. a) DMF, NaN3, rt, 4 h, 14 (83%); b) DMA, NaN3,
rt, 2 h, 14 (80%); c) DMF, NaN3, (10 equiv), 4 h, 14 (42%), 19 (48%); d) DMF, NaN3 (10
equiv), 24 h, 19 (75%); e) DMF, NaN3 (1 equiv), rt 4 h, then 60 oC, 8 h, 15 (85%); f) DMA,
NaN3 (1 equiv), rt, 3 h, then 60 oC, 6 h, 16 (73%); g) DMSO, rt, 5.5 h then, NaN3 (10
equiv), 17 (30%), 1 (49 %); h) DMSO, rt, 3 h, then NaN3 (10 equiv), 17 (26 %), 18 (18 %),
1 (44%), 19 (10%); i) DMSO, NaN3 (10 equiv), 1 h, 19 (65%), 17 (11%); j) DMF, 22 h, then
NaN3 (5 equiv), 2 h, 20 (58%), 11 (36 %); k) DMA, 15 h, then NaN3 (5 equiv), 2 h 21 (49
%), 13 (40%); l) NaN3 (10 equiv), DMSO, 17 (54%), 1 (36%).
(a) M. A. L. Podeschwa, O. Plettenburg and H. J. Altenbach,
Org. Biomol. Chem., 2003, 1, 1919; (b) K. M. Sureshan, T.
Murakami, Y. Watanabe, Synlett, 2005, 769; (c) S. Pasari, S.
M. Ismail, M. R. Wenk and M. J. Lear, Tetrahedron Lett.,
2015, 56, 2597; (d) P. Serrano, A. Llebaria and A. Delgado, J.
Org. Chem., 2005, 70, 7829; (e) R. C. Acurio, R. G. Soengas,
Paz. F. A. A and A. M. S. Silva, Synlett 2014, 2217.
K. M. Sureshan, M. S. Shashidhar, T. Praveen and T. Das,
Chem. Rev., 2003, 103, 4477.
X. Creary and E. A. Burtch, J. Org. Chem., 2004, 69, 1227.
Table 1 One-pot sequence-specific nucleophilyses of ditriflate 8
Entry
Reagent and conditions
DMF, NaN3 (1 equiv), 4 h
Products
14 (83%)
1
2
3
4
5
6
DMA, NaN3 (1 equiv), 3 h
14 (80%)
8
9
DMF, NaN3 (1 equiv), rt 4 h, then 60 oC, 8 h
DMA, NaN3 (1 equiv), rt, 3 h, then 60 oC, 6 h
DMSO, 5.5 h then, NaN3 (10 equiv),
DMSO 3 h, then NaN3 (10 equiv)
15 (85%)
16 (73%)
10 (a) S. C. Suri, S. L. Rodgers, K. V. Radhakrishnan and V. Nair,
Synth. Commun., 1996, 26, 1031; (b) A. M. Riley, D. J. Jenkins
and B. V. L. Potter, Carbohydr. Res., 1998, 314, 277.
11 D. J. Anderson, R. McDonald and M. Cowie, Angew. Chem.
Int. Ed., 2007, 19, 3815.
12 (a) T. Kawabata, W. Muramatsu, T. Nishio, T. Shibata and H.
Schedel, J. Am. Chem. Soc., 2007, 129, 12890; (b) J. Lawandi,
S. Rocheleau and N. Moitessier, Tetrahedron, 2016, 72, 6283;
(c) D. Lee and M. S. Taylor, J. Am. Chem. Soc., 2011, 133, 3724;
(d) W. Muramatsu, J. M. William and O. Onomura, J. Org.
Chem. 2012, 77, 754; (e) M. W. Giuliano and S. J. Miller
17 (30%), 1 (49%)
17 (26%), 18 (18%), 1
(44%), 19 (10%)
7
8
9
DMSO, NaN3 (10 equiv), 1 h
DMF, NaN3 (10 equiv), 4 h
DMF, NaN3 (10 equiv), 24 h
19 (65%), 17 (11%)
19 (48%), 14 (42%)
19 (75%)
10 DMF, 22 h, then NaN3 (5 equiv), 2 h
11 DMA, 15 h, then NaN3 (5 equiv), 2 h
20 (58%), 11 (36%)
21 (49%), 13 (40%)
Top. Curr. Chem. 2016, 372, 15; (f) B. Ren, M. Rahm, X.
In conclusion, we have observed a remarkable selectivity in
nucleophilic substitution of 2,5-di-sulfonates of myo-inositol.
The C2 sulfonate (axial) underwent faster substitution than the
C5 sulfonate (equatorial). The triflate underwent solvolysis in
DMSO and DMF at room temperature, installing an oxygen
nucleophile, the former showing higher reactivity. Azidolysis of
Zhang, Y. Zhou and H. Dong, J. Org. Chem., 2014, 79, 8134;
(g) S. Yamauchi, M. Hayashi and Y. Watanabe, Synlett, 2009,
2287; (h) M. S. Taylor, Acc. Chem. Res., 2015, 48, 295; (i) K.
Yoshida, T. Furuta and T. Kawabata, Angew. Chem. Int. Ed.
2011, 50, 4888.
This journal is © The Royal Society of Chemistry 2017
Chem.Commun., 2017, 00, 1-3 | 3
Please do not adjust margins