1482
X. Feng et al. / Journal of Organometallic Chemistry 696 (2011) 1479e1482
4.2. Representative procedure for the palladium-catalyzed homo-
coupling reaction of terminal alkynes
Acknowledgments
We are grateful to the National Natural Science Foundation of
China (No. 20972021) for their financial support. This work was also
supported by the Specialized Research Fund for the Doctoral
Program of Higher Education (No. 20090041110012) and the State
Key Laboratory of Fine Chemicals (KF0607).
To a mixture of Pd(PPh3)4 (5.8 mg, 0.005 mmol) and Ag2O
(115.9 mg, 0.5 mmol) in THF (2.5 mL) was added phenylacetylene
1a (50.1 mg, 0.5 mmol), and then the mixture was stirred at 60 ꢀC
under a N2 atmosphere. The reaction progress was monitored by
TLC. After the 1a consumed, the solvent was removed under
a reduced pressure. The product was filtered through a short silica
column with petroleum ether (60e90 ꢀC) to remove palladium
residue and then was purified with a silica column using petroleum
ether (60e90 ꢀC) as eluent, giving 1,3-diyne product 2a in 92% yield
Appendix. Supplementary material
Experimental procedures, characterization data for all homo-
coupling products and 1H NMR spectra for the corresponding
products. This material can be found in the online version at doi:10.
(46.5 mg) as a white solid [1]. 1H NMR (400 MHz, CDCl3)
d
7.55e7.51
132.7,
(m, 4H), 7.38e7.30 (m, 6H); 13C NMR (100 MHz, CDCl3)
d
129.4, 128.6, 122.0, 81.7, 74.1.
All the homo-coupling products 2 were identified through their
NMR and/or HRMS data as well as IR spectra. Among them, the
products 2h, 2k, and 2m are unknown compounds.
References
[1] S.-N. Chen, W.-Y. Wu, F.-Y. Tsai, Green Chem. 11 (2009) 269.
[2] T. Kurita, M. Abe, T. Maegawa, Y. Monguchi, H. Sajiki, Synlett (2007) 2521
(and references therein).
[3] J. Yan, J. Wu, H. Jin, J. Organomet. Chem. 692 (2007) 3636.
[4] M. Shi, H. Qian, Appl. Organomet. Chem. 20 (2006) 771 (and references therein).
[5] J. Li, Y. Liang, X. Zhang, Tetrahedron 61 (2005) 1903 (and references therein).
[6] W. Yin, C. He, M. Chen, H. Zhang, A. Lei, Org. Lett. 11 (2009) 709.
[7] E.H. Smith, J. Whittall, Organometallics 13 (1994) 5169.
[8] Q. Zheng, R. Hua, Y. Wan, Appl. Organomet. Chem. 24 (2010) 314 (and references
therein).
[9] D. Wang, J. Li, N. Li, T. Gao, S. Hou, B. Chen, Green Chem. 12 (2010) 45.
[10] F. Nador, L. Fortunato, Y. Moglie, C. Vitale, G. Radivoy, Synthesis (2009) 4027.
[11] S. Adimurthy, C.C. Malakar, U. Beifuss, J. Org. Chem. 74 (2009) 5648.
[12] L. Li, J. Wang, G. Zhang, Q. Liu, Tetrahedron Lett. 50 (2009) 4033.
[13] P. Kuhn, P. Pale, J. Sommer, B. Louis, J. Phys. Chem. C 113 (2009) 2903.
[14] B. Alcaide, P. Almendros, R. Carrascosa, R. Rodríguez-Acebes, Eur. J. Org. Chem.
(2008) 1575.
4.3. Tetradeca-6,8-diyne-2,13-dione (2h)
Colorless oil, 1H NMR (300 MHz, CDCl3)
d
2.55 (t, J ¼ 7.2 Hz, 4H),
2.28 (t, J ¼ 6.9 Hz, 4H), 2.14 (s, 6H), 1.76 (dt, J ¼ 7.2, 6.9 Hz, 4H); 13C
NMR (75 MHz, CDCl3):
d 207.9, 76.6, 65.9, 42.0, 30.0, 22.0, 18.4; IR
(neat) 2940, 2147, 1711, 1428, 1355, 1222, 1158, 950, 731 cmꢂ1
;
HRMS (ESI) calcd for C14H8O2 (M þ Na)þ: 241.1199, found: 241.1199.
4.4. 1,6-Bis(naphthalen-2-yloxy)hexa-2,4-diyne (2k)
[15] D. Li, K. Yin, J. Li, X. Jia, Tetrahedron Lett. 49 (2008) 5918.
[16] X. Lu, Y. Zhang, C. Luo, Y. Wang, Synth. Commun. 36 (2006) 2503.
[17] B.C. Ranu, S. Banerjee, Lett. Org. Chem. 3 (2006) 607.
[18] G. Hilt, C. Hengst, M. Arndt, Synthesis (2009) 395.
[19] C. González-Arellano, A. Abad, A. Corma, H. García, M. Iglesias, F. Sánchez,
Angew. Chem. Int. Ed. 46 (2007) 1536.
White solid, 1H NMR (400 MHz, CDCl3)
7.45e7.30 (m, 4H), 7.20e7.14 (m, 4H), 4.87 (s, 4H); 13C NMR
(100 MHz, CDCl3) 256.3, 155.3, 134.2, 129.7, 129.4, 127.7, 127.0,
126.5, 124.1, 118.6, 107.5, 74.6, 71.2; IR (KBr) 2918, 2850, 1628, 1598,
1368, 1252, 1215, 1180, 1010, 839, 747 cme1; HRMS (ESI) calcd for
C26H18O2 m/z: 362.1307, found: 362.1307.
d 7.80e7.70 (m, 6H),
d
[20] A. Mori, J. Kawashima, T. Shimada, M. Suguro, K. Hirabayashi, Y. Nishihara,
Org. Lett. 2 (2000) 2935.
[21] Although Ag2O has been utilized as an oxidant for the oxidation of Pd(0) to
Pd(II) in many examples, to best our knowledge, the direct evidence of this
oxidation reaction has not been reported so far. For selected recent references,
see: a) M.-B. Zhou, W.-T. Wei, Y.-X. Xie, Y. Lei, J.-H. Li, J. Org. Chem. 75 (2010)
5635;
4.5. 1,6-Bis(4-ethylphenoxy)hexa-2,4-diyne (2m)
White solid, 1H NMR (400 MHz, CDCl3)
d
7.12 (d, J ¼ 8.4 Hz, 4H),
b) V.S. Thirunavukkarasu, K. Parthasarathy, C.-H. Cheng, Angew. Chem. Int. Ed.
47 (2008) 9462;
c) S.H. Cho, S.J. Hwang, S. Chang, J. Am. Chem. Soc. 130 (2008) 9254;
d) F. Yang, Y. Wu, Eur. J. Org. Chem. (2007) 3476;
6.87 (d, J ¼ 8.4 Hz, 4H), 4.72(s, 4H), 2.63e2.55 (m, 4H), 1.21
(t, J ¼ 8.4 Hz, 6H); 13C NMR (100 MHz, CDCl3)
d 155.5, 137.6, 128.8,
e) X. Chen, C.E. Goodhue, J.-Q. Yu, J. Am. Chem. Soc. 128 (2006) 12634.
[22] E. Renbutsu, S. Okabe, Y. Omura, F. Nakatsubo, S. Minami, Y. Shigemasa,
H. Saimoto, Int. J. Biol. Macromol. 43 (2008) 62.
114.8, 71.0, 56.4, 28.0, 15.8; IR (KBr): 2962, 2928, 1511, 1370, 1235,
1022, 824 cme1; HRMS (ESI) calcd for C22H24O2 m/z: 318.1620,
found: 318.1621.
[23] E. Tomaszewicz, M. Kurzawa, J. Mater. Sci. 39 (2004) 2183.