Journal of the American Chemical Society
COMMUNICATION
Scheme 5
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures, char-
b
acterization data, and stereochemical proofs. This material is avail-
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
This work was supported by a grant from the National
Institutes of Health (NIGMS R01 GM58133). We gratefully
acknowledge the National Science Foundation for acquisition of
a 400 MHz nuclear magnetic resonance spectrometer (CRIF
0840451).
EZ-CrotylMix and EZ-AllylMix (Scheme 6). The use of 650 mg
of an EZ-CrotylMix (or 635 mg of an EZ-AllylMix) per 1.0 mmol
of aldehyde corresponds to 1.1 equiv of the silane and 4.4 mol %
of Sc(OTf)3. Thus, treatment of 1.0 mmol of R-methylcinna-
maldehyde with 650 mg of (S,S)-cis EZ-CrotylMix (in CH2Cl2 at
ambient temperature for 30 min) resulted in the isolation of 5 in
89% yield and 92% ee.15 The EZ-CrotylMix stoichiometry
(in the form of (R,R)-trans EZ-CrotylMix) also sufficed for
less reactive aldehdye 4, giving 13 in 85% yield and 97% ee.
Of course, additional Sc(OTf)3 or EZ-CrotylMix may be added
to the reactions of particularly unreactive aldehydes, but this
EZ-CrotylMix/EZ-AllylMix formulation appears to be effective
for most aldehydes.
’ REFERENCES
(1) (a) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 293.
(b) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 5919.
(2) By performing a citation analysis on the two papers in ref 1, we
have identified 32 distinct uses of the Brown crotylation method
published in original research papers just in the period of 2009ꢀ2010.
(3) For example, see: (a) Brown, H. C.; Bhat, K. S.; Randad, R. S.
J. Org. Chem. 1989, 54, 1570. (b) Ogawa, A. K.; Armstrong, R. W. J. Am.
Chem. Soc. 1998, 120, 12435. (c) Kobayashi, Y.; Lee, J.; Tezuka, K.;
Kishi, Y. Org. Lett. 1999, 1, 2177. (d) Nicolaou, K. C.; Fylaktakidou,
K. C.; Monenschein, H.; Li, Y.; Weyershausen, B.; Mitchell, H. J.; Wei,
H.-X.; Guntupalli, P.; Hepworth, D.; Sugita, K. J. Am. Chem. Soc. 2003,
125, 15433. (e) Zampella, A.; Sepe, V.; D’Orsi, R.; Bifulco, G.; Bassarello,
C.; Valeria D’Auria, M. Tetrahedron: Asymmetry 2003, 14, 1787.
(4) The preparation of the requisite cis- or trans-crotylborane
reagent entails the carefully (low and variable) temperature-controlled
metalation of either cis- or trans-2-butene with n-BuLi and KOt-Bu,
addition of the resulting crotylpotassium species to either (þ)- or
(ꢀ)-(ipc)2BOMe, and then addition of BF3•OEt2 and the aldehyde.
In addition, the workup procedure entails the oxidative cleavage of the
borane from the product alcohol, which has the side effect of generating
2 equiv of isopinocampheol that can, and often does, render product
isolation significantly more laborious.
Scheme 6
(5) (a) Roush, W. R.; Ando, K; Powers, D. B.; Palkowitz, A. D.;
Halterman, R. L. J. Am. Chem. Soc. 1990, 112, 6339. (b) Roush, W. R.;
Grover, P. T. J. Org. Chem. 1995, 60, 3806. (c) Garcia, J.; Kim, B. M.;
Masamune, S. J. Org. Chem. 1987, 52, 4831. (d) Hafner, A.; Duthlaer,
R. O.; Marti, R.; Rihs, G.; Rothe-Streit, P.; Schwarzenbach, F. J. Am.
Chem. Soc. 1992, 114, 2321. (e) Jain, N. F.; Takenaka, N.; Panek, J. S.
J. Am. Chem. Soc. 1996, 118, 12475. (f) Denmark, S. E.; Fu, J. J. Am.
Chem. Soc. 2001, 123, 9488. (g) Lachance, H.; Lu, X.; Gravel, M.; Hall,
D. G. J. Am. Chem. Soc. 2003, 125, 10160. (h) Burgos, C. H.; Canales, E.;
Matos, K.; Soderquist, J. A. J. Am. Chem. Soc. 2005, 127, 8044. (i) Kim,
I. S.; Han, S. B.; Krische, M. J. J. Am. Chem. Soc. 2009, 131, 2514.
(6) Hackman, B. M.; Lombardi, P. J.; Leighton, J. L. Org. Lett. 2004,
6, 4375.
(7) (a) Berger, R.; Duff, K.; Leighton, J. L. J. Am. Chem. Soc. 2004,
126, 5686. (b) Burns, N. Z.; Hackman, B. M.; Ng, P. Y.; Powelson, I. A.;
Leighton, J. L. Angew. Chem., Int. Ed. 2006, 45, 3811.
(8) (a) Kennedy, J. W. J.; Hall, D. G. J. Am. Chem. Soc. 2002,
124, 11586. (b) Ishiyama, T.; Ahiko, T.; Miyaura, N. J. Am. Chem. Soc.
2002, 124, 12414.
Sc(OTf)3 is an effective catalyst for the enantioselective
crotylation of aldehydes using crotylsilanes 1 and 2, and this
has resulted in a dramatic increase in the scope of aldehydes that
may be effectively crotylated using this methodology. Indeed,
based primarily on the reactions of aldehydes 4, 7, 8, 9, and 11, we
may conclude that our method has a broader scope than any other
asymmetric crotylation methodology. That the silanes
and Sc(OTf)3 are crystalline solids has further facilitated the
EZ-CrotylMix formulation,16 rendering this methodology the
most comprehensive and highly practical solution to the enduring
problem of enantioselective aldehyde crotylation yet advanced.
(9) (a) Yu, S. H.; Ferguson, M. J.; McDonald, R.; Hall, D. G. J. Am.
Chem. Soc. 2005, 127, 12808. (b) Rauniyar, V.; Hall, D. G. Angew. Chem.,
Int. Ed. 2006, 45, 2426. (c) Rauniyar, V.; Zhai, H.; Hall, D. G. J. Am.
Chem. Soc. 2008, 130, 8481. (d) Barnett, D. S.; Moquist, P. N.; Schaus,
6519
dx.doi.org/10.1021/ja200712f |J. Am. Chem. Soc. 2011, 133, 6517–6520