H.-P. Deng, Y. Wei, M. Shi
FULL PAPER
Peng, J. Lei, K. Jiang, Y.-C. Chen, Angew. Chem. 2009, 121,
5847–5850; Angew. Chem. Int. Ed. 2009, 48, 5737–5740; g) Z.-
K. Hu, H.-L. Cui, K. Jiang, Y.-C. Chen, Sci. China, Ser.B
Chem. 2009, 52, 1309–1313; h) X. Feng, Y.-Q. Yuan, H.-L. Cui,
K. Jiang, Y.-C. Chen, Org. Biomol. Chem. 2009, 7, 3660–3662.
[6] a) L. Hong, W.-S. Sun, C.-X. Liu, D.-P. Zhao, R. Wang, Chem.
Commun. 2010, 46, 2856–2858; b) W.-S. Sun, L. Hong, C.-X.
Liu, R. Wang, Org. Lett. 2010, 12, 3914–3917.
[7] G.-N. Ma, S.-H. Cao, M. Shi, Tetrahedron: Asymmetry 2009,
20, 1086–1092. In this paper, enantioselective allylic substitu-
tion of Morita–Baylis–Hillman (MBH) acetates with phthal-
imide was realized in the presence of a new l-proline-derived
chiral trifunctional phosphane amide ligand to give the corre-
sponding allylic amination adducts in good yields (70–95%)
and modest to good enantioselectivities (34–78% ee).
[8] Y.-Q. Jiang, Y.-L. Shi, M. Shi, J. Am. Chem. Soc. 2008, 130,
7202–7203.
H, CH), 6.53 (s, 1 H, CH), 7.57 (d, J = 8.7 Hz, 2 H, ArH), 7.73–
7.76 (m, 2 H, ArH), 7.83–7.86 (m, 2 H, ArH), 8.21 (d, J = 8.7 Hz,
2 H, ArH) ppm. The enantiomeric excess was determined by HPLC
with a Chiralcel OD-H column [λ = 214 nm; eluent: Hexane/Iso-
propyl alcohol 70:30; flow rate: 0.7 mL/min; tmajor = 21.19 min,
tminor = 30.55 min; ee% = 90%. [α]2D0 = +66.5 (c = 1.0, CHCl3)].
Supporting Information (see footnote on the first page of this arti-
cle): Spectroscopic data and chiral HPLC traces of the compounds
shown in Tables 1, 2, and 3, X-ray crystallographic data for 3e, and
the detailed descriptions of the experimental procedures.
Acknowledgments
Financial support from the Shanghai Municipal Committee of Sci-
ence and Technology (08dj1400100–2), National Basic Research
Program of China [(973)-2010CB833302], and the National Natu-
ral Science Foundation of China (21072206, 20472096, 20902019,
20872162, 20672127, 20821002, 20732008, and 20702059) is greatly
acknowledged. We thank Professor Jie Sun for performing the X-
ray diffraction analysis.
[9] Y. Wei, M. Shi, Acc. Chem. Res. 2010, 43, 1005–1018.
[10] B. J. Cowen, S. J. Miller, J. Am. Chem. Soc. 2007, 129, 10988–
10989.
[11] H. Xiao, Z. Chai, C.-W. Zheng, Y.-Q. Yang, W. Liu, J.-K.
Zhang, G. Zhao, Angew. Chem. 2010, 122, 4569–4572; Angew.
Chem. Int. Ed. 2010, 49, 4467–4470.
[12] Y.-Q. Fang, E. N. Jacobsen, J. Am. Chem. Soc. 2008, 130,
5660–5661.
[13] a) K. Yuan, L. Zhang, H.-L. Song, Y. Hu, X.-Y. Wu, Tetrahe-
dron Lett. 2008, 49, 6262–6264; b) J.-J. Gong, K. Yuan, X.-Y.
Wu, Tetrahedron: Asymmetry 2009, 20, 2117–2120; c) K. Yuan,
H.-L. Song, Y. Hu, J.-F. Fang, X.-Y. Wu, Tetrahedron: Asym-
metry 2010, 21, 903–908.
[1] For selected reviews on the Morita–Baylis–Hillman reaction,
see: a) S. E. Drewes, G. H. P. Roos, Tetrahedron 1988, 44, 4653–
4670; b) D. Basavaiah, P. D. Rao, R. S. Hyma, Tetrahedron
1996, 52, 8001–8062; c) E. Ciganek in Organic Reactions (Ed.:
L. A. Paquette), Wiley, New York, 1997, vol. 51, pp. 201–350;
d) P. Langer, Angew. Chem. 2000, 112, 3177–3180; Angew.
Chem. Int. Ed. 2000, 39, 3049–3051; e) D. Basavaiah, A. J. Rao,
T. Satyanarayana, Chem. Rev. 2003, 103, 811–892; f) Y.-L. Shi,
M. Shi, Eur. J. Org. Chem. 2007, 2905–2916; g) G. Masson, C.
Housseman, J.-P. Zhu, Angew. Chem. 2007, 119, 4698–4712;
Angew. Chem. Int. Ed. 2007, 46, 4614–4628; h) D. Basavaiah,
K. V. Rao, R. J. Reddy, Chem. Soc. Rev. 2007, 36, 1581–1588;
i) C. Menozzi, P. I. Dalko, “Organocatalytic Enantioselective
Morita–Baylis–Hillman Reactions in Enantioselective Organ-
ocatalysis” in Reactions and Experimental Procedures (Ed.: P. I.
Dalko), Wiley-VCH, Weinheim, 2007; j) V. Dederck, J. Matti-
nez, F. Lamaty, Chem. Rev. 2009, 109, 1–48; k) G.-N. Ma, J.-J.
Jiang, M. Shi, Y. Wei, Chem. Commun. 2009, 45, 5496–5514; l)
D. Basavaiah, B. S. Reddy, S. S. Badsara, Chem. Rev. 2010, 110,
5447–5674.
[14] a) M. Shi, L.-H. Chen, Chem. Commun. 2003, 39, 1310–1311;
b) M. Shi, L.-H. Chen, C.-Q. Li, J. Am. Chem. Soc. 2005, 127,
3790–3800; c) M. Shi, C.-Q. Li, Tetrahedron: Asymmetry 2005,
16, 1385–1391; d) M. Shi, L.-H. Chen, W.-D. Teng, Adv. Synth.
Catal. 2005, 347, 1781–1789; e) Y.-H. Liu, L.-H. Chen, M. Shi,
Adv. Synth. Catal. 2006, 348, 973–979; f) M. Shi, G.-N. Ma, J.
Gao, J. Org. Chem. 2007, 72, 9779–9781; g) Y.-L. Shi, M. Shi,
Adv. Synth. Catal. 2007, 349, 2129–2135; h) M. Shi, Y.-H. Liu,
L.-H. Chen, Chirality 2007, 19, 124–128; i) M.-J. Qi, T. Ai, M.
Shi, G. Li, Tetrahedron 2008, 64, 1181–1186; j) Y.-H. Liu, M.
Shi, Adv. Synth. Catal. 2008, 350, 122–128; k) Z.-Y. Lei, G.-N.
Ma, M. Shi, Eur. J. Org. Chem. 2008, 3817–3820; l) Z.-Y. Lei,
X.-G. Liu, M. Shi, M. Zhao, Tetrahedron: Asymmetry 2008,
19, 2058–2062; m) X.-Y. Guan, Y.-Q. Jiang, M. Shi, Eur. J.
Org. Chem. 2008, 2150–2155.
[15] We initially synthesized a series of chiral bifunctional amide–
phosphane organocatalysts (AP) and used them in the catalytic
asymmetric allylic amination of MBH acetates derived from
MVK with phthalimide, but the obtained results are not suc-
cessful (see Table S1 in the Supporting Information).
[2] For selected reports on SN2Ј–SN2Ј substitution of Morita–
Baylis–Hillman acetates or carbonates, see: a) B. M. Trost,
M. R. Machacek, H. C. Tsui, J. Am. Chem. Soc. 2005, 127,
7014–7024; b) C.-W. Cho, J.-R. Kong, M. J. Krische, Org. Lett.
2004, 6, 1337–1339; c) C.-W. Cho, M. J. Krische, Angew. Chem.
2004, 116, 6857–6859; Angew. Chem. Int. Ed. 2004, 43, 6689–
6691; d) H. Park, C.-W. Cho, M. J. Krische, J. Org. Chem. 2006,
71, 7892–7894; e) S. Kobbelgaard, S. Brandes, K. A. Jørgensen,
Chem. Eur. J. 2008, 14, 1464–1471.
[3] a) Y.-S. Du, X.-L. Han, X.-Y. Lu, Tetrahedron Lett. 2004, 45,
4967–4971; b) D. J. V. C. van Steenis, T. Marcelli, M. Lutz,
A. L. Spek, J. H. van Maarseveen, H. Hiemstra, Adv. Synth.
Catal. 2007, 349, 281–286.
[4] T.-Z. Zhang, L.-X. Dai, X.-L. Hou, Tetrahedron: Asymmetry
2007, 18, 1990–1994.
[5] a) K. Jiang, J. Peng, H.-L. Cui, Y.-C. Chen, Chem. Commun.
2009, 45, 3955–3957; b) H.-L. Cui, J. Peng, X. Feng, W. Du,
K. Jiang, Y.-C. Chen, Chem. Eur. J. 2009, 15, 1574–1577; c)
H.-L. Cui, J.-R. Huang, J. Lei, Z.-F. Wang, S. Chen, L. Wu,
Y.-C. Chen, Org. Lett. 2010, 12, 720–723; d) J. Peng, X. Huang,
H.-L. Cui, Y.-C. Chen, Org. Lett. 2010, 12, 4260–4263; e) S.-J.
Zhang, H.-L. Cui, K. Jiang, R. Li, Z.-Y. Ding, Y.-C. Chen,
Eur. J. Org. Chem. 2009, 5804–5809; f) H.-L. Cui, X. Feng, J.
[16] R. P. Bell, W. C. E. Higginson, Proc. R. Soc. 1949, 197, 141–
159.
[17] J. F. J. Dippy, S. R. C. Hughes, A. Rozanski, J. Chem. Soc.
1959, 2492–2498.
[18] a) K. Sumi, T. Ikariya, R. Noyori, Can. J. Chem. 2000, 78,
697–703; b) P. N. M. Botman, O. David, A. Amore, J. Dinke-
laar, M. T. Vlaar, K. Goubitz, J. Fraanje, H. Schenk, H. Hiem-
sta, J. H. van Maarseveen, Angew. Chem. 2004, 116, 3553–
3555; Angew. Chem. Int. Ed. 2004, 43, 3471–3473.
Received: December 11, 2010
Published Online: February 15, 2011
1960
www.eurjoc.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2011, 1956–1960