À
À
Synthesis of Isoquinolines via RhodiumACTHNUTRGNEU(GN III)-Catalyzed Dehydrative C C and C N Coupling
h) F. Kakiuchi, T. Kochi, Synthesis 2008, 3013–3039;
i) X. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu, Angew.
Chem. 2009, 121, 5196–5217; Angew. Chem. Int. Ed.
2009, 48, 5094–5115.
ing of [RhCp*Cl2]2. This redox-neutral isoquinoline
synthesis operates under mild conditions with water
as the only by-product, and it is not sensitive to mois-
ture or air. A broad scope of coupling partners has
been established. This synthetic method should find
broad applications in the synthesis of related complex
molecules. Further computational studies are under-
[2] a) R. C. Larock, E. K. Yum, J. Am. Chem. Soc. 1991,
113, 6689–6690; b) J. Barluenga, F. Aznar, M. A. Palo-
mero, Angew. Chem. 2000, 112, 4503–4506; Angew.
Chem. Int. Ed. 2000, 39, 4343–4346; c) K. H. Dotz, J.
Stendel, Chem. Rev. 2009, 109, 3227–3274; d) R. P.
Korivi, C. H. Cheng, J. Org. Chem. 2006, 71, 7079–
7082; e) Z. M. Sun, S. P. Chen, P. Zhao, Chem. Eur. J.
2010, 16, 2619–2627; f) T. Satoh, M. Miura, Chem. Eur.
J. 2010, 16, 11212–11222.
[3] a) P. Giri, G. S. Kumar, Mini-Rev. Med. Chem. 2010, 10,
568–577; b) T. Ukita, Y. Nakamura, A. Kubo, Y. Yama-
moto, Y. Moritani, K. Saruta, T. Higashijima, J. Kotera,
M. Takagi, K. Kikkawa, K. Omori, J. Med. Chem. 2001,
44, 2204–2218; c) L. W. Deady, S. M. Devine, J. Hetero-
cycl. Chem.2004, 41, 549–555; d) S. Fetzner, Appl. Mi-
croblot. Biot. 1998, 49, 237–250; e) A. L. Ruchelman,
P. J. Houghton, N. Zhou, A. Liu, L. F. Liu, E. J. LaVoie,
J. Med. Chem. 2005, 48, 792–804.
[4] a) K. R. Roesch, R. C. Larock, J. Org. Chem. 1998, 63,
5306–5307; b) K. R. Roesch, R. C. Larock, Org. Lett.
1999, 1, 553–556; c) K. R. Roesch, H. Zhang, R. C.
Larock, J. Org. Chem. 2001, 66, 8042–8051; d) G. Dai,
R. C. Larock, Org. Lett. 2002, 4, 193–196; e) K. R.
Roesch, R. C. Larock, J. Org. Chem. 2002, 67, 86–94;
f) G. Dai, R. C. Larock, J. Org. Chem. 2003, 68, 920–
928.
À
way to understand the nature of the C N bond for-
mation in the catalytic cycle.
Experimental Section
Synthesis of 3aa
A Schlenk tube containing CsOAc (29 mg, 0.151 mmol,
30 mol%) and [RhCp*Cl2]2 (3.2 mg, 0.005 mmol, 1 mol%)
was evacuated and was purged with nitrogen. Methanol
(4 mL), ketoxime 1a (100 mg, 0.508 mmol, 1 equiv.), and di-
phenylacetylene (117.7 mg, 0.660 mmol, 1.3 equiv.) were se-
quentially added, and the resulting mixture was stirred at
608C for 16 h, followed by removal of the solvent under re-
duced pressure. Purification was performed by flash column
chromatography on silica gel using EtOAc in hexane to give
isoquinoline 3aa; yield: 166.8 mg (92%). 1H NMR
(500 MHz, CD2Cl2): d=8.06 (d, J=8.0 Hz, 1H), 7.59–7.70
(m, 2H), 7.60 (d, J=8.0 Hz, 1H), 7.42–7.52 (m, 5H), 7.28–
7.34 (m, 5H), 7.20–7.22 (m, 2H), 7.08–7.11 (m, 3H);
13C NMR (125 MHz, CD2Cl2): d=160.2, 150.2, 141.7, 140.4,
138.2, 137.6, 131.9, 131.0, 130.7, 130.6, 130.4, 129.1, 128.9,
128.8, 128.0, 127.9, 127.8, 127.6, 127.3, 126.5, 125.9.
[5] V. Ritleng, C. Sirlin, M. Pfeffer, Chem. Rev. 2002, 102,
1731–1770.
[6] a) L. Li, Y. Z. Jiao, W. W. Brennessel, W. D. Jones, Or-
ganometallics 2010, 29, 4593–4605; b) Y. Boutadla,
D. L. Davies, S. A. Macgregor, A. I. Poblador-Baha-
mondeb, Dalton Trans. 2009, 30, 5887–5893; c) L. Li,
W. W. Brennessel, W. D. Jones, Organometallics 2009,
28, 3492–3500; d) D. L. Davies, S. M. A. Donald, O.
Al-Duaij, S. A. Macgregor, M. Pçlleth, J. Am. Chem.
Soc. 2006, 128, 4210–4211; e) D. L. Davies, S. M. A.
Donald, O. Al-Duaij, J. Fawcett, C. Little, S. A. Mac-
gregor. Organometallics 2006, 25, 5976–5978.
[7] a) N. Guimond, K. Fagnou, J. Am. Chem. Soc. 2009,
131, 12050–12051; b) S. Mochida, N. Umeda, K.
Hirano, T. Satoh, M. Miura, Chem. Lett. 2010, 39, 744–
746; c) T. Fukutani, N. Umeda, K. Hirano, T. Satoh, M.
Miura, Chem. Commun. 2009, 34, 5141–5143.
Acknowledgements
We thank the Dalian Institute of Chemical Physics, Chinese
Academy of Sciences, for generous financial support. This
work is supported by the National Basic Research Program
of China (2010CB923303), the National Science Foundation
of China (NSFC) (Grants no. 20902045 and 21072188), and
Program of New Century Excellent Talents in University.
X.L. conceived and designed the experiments. We thank a ref-
eree for suggestions on the revision of our proposed path-
ways.
[8] D. A. Colby, R. G. Bergman, J. A. Ellman, J. Am.
Chem. Soc. 2008, 130, 3645–3651.
[9] S. G. Lim, J. H. Lee, C. W. Moon, J. B. Hong, C. H. Jun,
Org. Lett. 2003, 5, 2759–2761.
[10] a) K. Parthasarathy, C. H. Cheng, J. Org. Chem. 2009,
74, 9359–9364; b) K. Parthasarathy, M. Jeganmohan,
C. H. Cheng, Org. Lett. 2008, 10, 325–328.
[11] a) N. Guimond, C. Gouliaras, K. Fagnou, J. Am. Chem.
Soc. 2010, 132, 6908–6909; b) P. C. Too, Y-F. Wang, S.
Chiba, Org. Lett. 2010, 12, 5688–5691.
[12] T. K. Hyster, T. Rovis, J. Am. Chem. Soc. 2010, 132,
10565–10569.
[13] G. Song, D. Chen, C.-L. Pan, R. H. Crabtree, X. Li, J.
Org. Chem. 2010, 75, 7487–7490.
References
[1] a) D. A. Colby, R. G. Bergman, J. A. Ellman, Chem.
Rev. 2010, 110, 624–655; b) A. E. Shilov, G. B. Shul’pin,
Chem. Rev. 1997, 97, 2879–2932; c) I. A. I. Mkhalid,
J. H. Barnard, T. B. Marder, J. M. Murphy, J. F. Hart-
wig, Chem. Rev. 2010, 110, 890–931; d) D. Alberico,
M. E. Scott, M. Lautens, Chem. Rev. 2007, 107, 174–
238; e) C. L. Sun, B. J. Li, Z. J. Shi, Chem. Rev. 2010,
DOI: 10.1021/cr100198w; f) T. W. Lyons, M. S. Sanford,
Chem. Rev. 2010, 110, 1147–1169; g) L. Ackermann, R.
Vicente, A. R. Kapdi, Angew. Chem. 2009, 121, 9976–
10011; Angew. Chem. Int. Ed. 2009, 48, 9792–9826;
Adv. Synth. Catal. 2011, 353, 719 – 723
ꢁ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
723