M. A. Rampi and P. Samori, Proc. Natl. Acad. Sci. U. S. A., 2007,
104, 9937–9942; (c) W. Freyer, D. Brete, R. Schmidt, C. Gahl,
R. Carley and M. Weinelt, J. Photochem. Photobiol., A, 2009, 204,
102–109; (d) M. Han, D. Ishikawa, T. Honda, E. Ito and M. Hara,
Chem. Commun., 2010, 46, 3598–3600; (e) S. Sortino, S. Petralia,
S. Conoci and S. Di Bella, J. Mater. Chem., 2004, 14, 811–813.
10 (a) T. Sakai, H. Murayama, S. Nagano, Y. Takeoka, M. Kidowaki,
K. Ito and T. Seki, Adv. Mater., 2007, 19, 2023–2025; (b) M. Sato,
S. Nagano and T. Seki, Chem. Commun., 2009, 3792–3794.
11 (a) T. Fischer, L. Lasker, J. Stumpe and S. G. Kostromin, J.
Photochem. Photobiol., A, 1994, 80, 453–459; (b) D. K. Hore,
A. L. Natansohn and P. L. Rochon, J. Phys. Chem. B, 2002, 106,
9004–9012.
12 (a) M. Han, S. Morino and K. Ichimura, Macromolecules, 2000, 33,
6360–6371; (b) M. Han and K. Ichimura, Macromolecules, 2001, 34,
82–89.
13 A. Natansohn and P. Rochon, Adv. Mater., 1999, 11, 1387–1391.
14 (a) R. Wang, T. Iyoda, L. Jiang, D. A. Tryk, K. Hashimoto and
A. Fujishima, J. Electroanal. Chem., 1997, 438, 213–219; (b)
S. D. Evans, S. R. Johnson, H. Ringsdorf, L. M. Williams and
H. Wolf, Langmuir, 1998, 14, 6436–6440; (c) K. Tamada,
J. Nagasawa, F. Nakanishi, K. Abe, T. Ishida, M. Hara and
W. Knoll, Langmuir, 1998, 14, 3264–3271.
15 (a) K. Tamada, H. Akiyama and T. X. Wei, Langmuir, 2002, 18,
5239–5246; (b) K. Tamada, H. Akiyama, T. X. Wei and S. A. Kim,
Langmuir, 2003, 19, 2306–2312; (c) L. F. N. A. Qune, H. Akiyama,
T. Nagahiro, K. Tamada and A. T. S. Wee, Appl. Phys. Lett., 2008,
93, 083109; (d) S. Yasuda, T. Nakamura, M. Matsumoto and
H. Shigekawa, J. Am. Chem. Soc., 2003, 125, 16430–16433; (e)
A. S. Kumar, T. Ye, T. Takami, B. C. Yu, A. K. Flatt, J. M. Tour
and P. S. Weiss, Nano Lett., 2008, 8, 1644–1648.
16 (a) T. Weidner, F. Bretthauer, N. Ballav, H. Motschmann, H. Orendi,
C. Bruhn, U. Siemeling and M. Zharnikov, Langmuir, 2008, 24,
11691–11700; (b) U. Jung, O. Filinova, S. Kuhn, D. Zargarani,
C. Bornholdt, R. Herges and O. Magnussen, Langmuir, 2010, 26,
13913–13923.
17 T. Ishida, S. Yamamoto, W. Mizutani, M. Motomatsu,
H. Tokumoto, H. Hokari, H. Azehara and M. Fujihira, Langmuir,
1997, 13, 3261–3265.
18 M. Nakagawa, R. Watase and K. Ichimura, Chem. Lett., 1999, 1209–
1210.
19 (a) J. P. Otruba and R. G. Weiss, J. Org. Chem., 1983, 48, 3448–3453;
(b) N. J. Bunce, G. Ferguson, C. L. Forber and G. J. Stachnyk, J. Org.
Chem., 1987, 52, 394–398; (c) M. Han, D. Hashizume and M. Hara,
Acta Crystallogr., Sect. E: Struct. Rep. Online, 2006, 62, O3001–
O3003; (d) M. Han, T. Hirade and M. Hara, New J. Chem., 2010,
34, 2887–2891.
20 (a) H. Nishioka, X. G. Liang and H. Asanuma, Chem.–Eur. J., 2010,
16, 2054–2062; (b) H. Nishioka, X. G. Liang, H. Kashida and
H. Asanuma, Chem. Commun., 2007, 4354–4356; (c) H. Asanuma,
X. Liang, H. Nishioka, D. Matsunaga, M. Liu and M. Komiyama,
Nat. Protoc., 2007, 2, 203–212.
Instrumentation
The chemical composition of the azobenzene SAMs was char-
acterized using XPS measurements (Thermo Fisher Scientific,
Theta Probe) by a monochromatized AlKa X-ray source (1486.6
eV). The peak position and area in the spectrum were determined
by curve-fitting analysis (Thermo Avantage ver. 3.25). The sessile
contact angle method was used to measure the contact angles of
€
a water drop on the gold substrates in air using the Kruss drop
shape analysis system DSA10-Mk2. The UV–vis absorption
spectrum (Shimadzu UV3150 UV-VIS-NIR spectrophotometer)
of each sample was recorded in absorbance mode against air in
the reference path. For each spectrum of the azobenzene SAM,
the spectrum of the pure gold surface (measured prior to the
preparation of the azobenzene SAM) was subtracted. Azo-
benzene SAMs were exposed to UV light (365 nm, Mineralight
lamp, model UVGL-25, UVP, Upland, CA 91786) under
a nitrogen atmosphere to induce trans-to-cis isomerization or to
visible light (436 nm, high-pressure UV lamp, Ushio Inc.,
combination of Toshiba color filters, Y-43 + V-44) to induce cis-
to-trans isomerization.
Acknowledgements
This work was supported by the Global COE program from the
Ministry of Education, Culture, Sports, Science, and Technology
of Japanese Government.
References
1 (a) K. Ichimura, S. K. Oh and M. Nakagawa, Science, 2000, 288,
1624–1626; (b) A. N. Shipway and I. Willner, Acc. Chem. Res.,
2001, 34, 421–432; (c) Z. Sekkat and W. Knoll, ed., Photoreactive
Organic Thin Films, Academic Press, Elsevier Science, USA, 2002;
(d) A. Natansohn and P. Rochon, Chem. Rev., 2002, 102, 4139–
4175; (e) S. Wang, Y. Song and L. Jiang, J. Photochem. Photobiol.,
C, 2007, 8, 18–27.
2 (a) A. Ulman, ed., Self-Assembled Monolayers of Thiols, Academic
Press, USA, 1998; (b) J. C. Love, L. A. Estroff, J. K. Kriebel,
R. G. Nuzzo and G. M. Whitesides, Chem. Rev., 2005, 105, 1103–
1169.
3 J. Lahann, S. Mitragotri, T. N. Tran, H. Kaido, J. Sundaram,
I. S. Choi, S. Hoffer, G. A. Somorjai and R. Langer, Science, 2003,
299, 371–374.
€
4 (a) H. Rau, Photochromism: Molecules and Systems, ed. H. Durr and
21 M. Han and M. Hara, J. Am. Chem. Soc., 2005, 127, 10951–10955.
22 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven,
K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi,
V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,
G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian,
J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts,
R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli,
J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth,
P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich,
A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz,
Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov,
G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin,
D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng,
A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson,
W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, GAUSSIAN
03, Revision D.01, Gaussian, Inc., Wallingford, CT, 2004.
23 (a) H. Rau and Y. Q. Shen, J. Photochem. Photobiol., A, 1988, 42,
321–327; (b) C. Ruslim and K. Ichimura, J. Mater. Chem., 2000, 10,
2704–2707.
H. Bouas-Laurent, Elsevier, Amsterdam, 1990; (b) H. Zollinger, Color
Chemistry: Synthesis, Properties and Applications of Organic Dyes and
Pigments, 2nd ed., VCH, Weinheim, 1991.
5 (a) K. Ichimura, Chem. Rev., 2000, 100, 1847–1873; (b) O. Pieroni,
A. Fissi, N. Angelini and F. Lenci, Acc. Chem. Res., 2001, 34, 9–17.
6 (a) P. D. Wildes and E. H. White, J. Am. Chem. Soc., 1971, 93, 2004–
2008; (b) G. Gabor and E. Fischer, J. Phys. Chem., 1971, 75, 581–583;
(c) C. S. Paik and H. Morawetz, Macromolecules, 1972, 5, 171–177;
(d) E. V. Brown and G. R. Granneman, J. Am. Chem. Soc., 1975,
97, 621–627; (e) J. M. Nerbonne and R. G. Weiss, J. Am. Chem.
Soc., 1978, 100, 5953–5954; (f) H. J. Haitjema, Y. Y. Tan and
G. Challa, Macromolecules, 1995, 28, 2867–2873; (g) C. Wang and
R. G. Weiss, Macromolecules, 2003, 36, 3833–3840.
7 (a) Y. Norikane, K. Kitamoto and N. Tamaoki, Org. Lett., 2002, 4,
3907–3910; (b) Y. Norikane, R. Katoh and N. Tamaoki, Chem.
Commun., 2008, 1898–1900.
8 (a) Y. L. Yu, M. Nakano and T. Ikeda, Nature, 2003, 425, 145–145;
(b) V. Ferri, M. Elbing, G. Pace, M. D. Dickey, M. Zharnikov,
P. Samori, M. Mayor and M. A. Rampi, Angew. Chem., Int. Ed.,
2008, 47, 3407–3409.
9 (a) M. J. Cook, A. M. Nygard, Z. X. Wang and D. A. Russell, Chem.
Commun., 2002, 1056–1057; (b) G. Pace, V. Ferri, C. Grave,
M. Elbing, C. von Hanisch, M. Zharnikov, M. Mayor,
This journal is ª The Royal Society of Chemistry 2011
J. Mater. Chem., 2011, 21, 4696–4702 | 4701