RESEARCH FRONT
Potential New RAFT–‘Click’ Reaction
437
(1H, 400.13 MHz; 13C, 100.63 MHz) at 258C in deuterated
solvents as stated. Proton chemical shifts are expressed in parts
per million (d scale) downfield from tetramethylsilane and
are referenced to the residual protonated NMR solvent signal.
Carbon chemical shifts are expressed in parts per million (d
scale) downfield from tetramethylsilane and are referenced to
the carbon resonance of the NMR solvent spectra.
[3] J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le,
R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo,
S. H. Thang, Macromolecules 1998, 31, 5559. doi:10.1021/MA9804951
[4] G. Moad, E. Rizzardo, S. H. Thang, Aust. J. Chem. 2005, 58, 379.
doi:10.1071/CH05072
[5] G. Moad, E. Rizzardo, S. H. Thang, Aust. J. Chem. 2006, 59, 669.
doi:10.1071/CH06250
[6] G. Moad, E. Rizzardo, S. H. Thang, Acc. Chem. Res. 2008, 41, 1133.
doi:10.1021/AR800075N
[7] G. Moad, E. Rizzardo, S. H. Thang, Polymer 2008, 49, 1079.
doi:10.1016/J.POLYMER.2007.11.020
[8] G. Moad, E. Rizzardo, S. H. Thang, Aust. J. Chem. 2009, 62, 1402.
doi:10.1071/CH09311
[9] H. Staudinger, J. Siegwart, Helv. Chim. Acta 1920, 3, 833. doi:10.1002/
HLCA.19200030178
[10] A. Scho¨nberg, B. Koenig, E. Singer, Chem. Ber. 1967, 100, 767.
doi:10.1002/CBER.19671000310
[11] R. Huisgen, I. Kalvinsch, X. Li, G. Mloston, Eur. J. Org. Chem. 2000,
Molecular weights of polymer were characterized by GPC
performed in tetrahydrofuran (THF, 1.0 mL minꢀ1) at 308C
using a Waters GPC instrument with a Waters 2414 refractive
index detector, a series of four Polymer Laboratories PLGel
columns (3 ꢃ 5 mm Mixed-C and 1 ꢃ 3 mm Mixed-E) and
Empower software. The GPC was calibrated with narrow poly-
dispersity polystyrene standards (Polymer Laboratories Easi-
Cal, molecular weight from 264 to 256000). PMMA molecular
weights are based on application of universal calibration and
Mark–Houwink–Sakaruda parameters of K ¼ 11.4 ꢃ 108 g Lꢀ1
(polystyrene).[16]
,
2000, 1685.
a ¼ 0.716 (PMMA),[15] and K ¼ 9.44 ꢃ 108 g Lꢀ1, a ¼ 0.719
[12] G. Mloston, K. Urbaniak, M. Gulea, S. Masson, A. Linden,
H. Heimgartner, Helv. Chim. Acta 2005, 88, 2582. doi:10.1002/HLCA.
200590198
Synthesis of 1,3-Dithiolane 10 and 11. An ethereal solution
of diazomethane was added dropwise to a dichloromethane
solution (2 mL) of the dithiobenzoate 9 (221 mg, 1.00 mmol)
at 208C until the red colour of the reaction mixture had vanished.
The solution was evaporated to dryness, and purified by column
chromatography on silica gel (Kieselgel-60, 230–400 mesh)
with ethyl acetate/n-hexane 10:90 (v/v) as eluent to afford the
two stereoisomers of the 1,3-dithiolane, 10 (121 mg, 53%) and
11 (96 mg, 42%). Both products were recrystallized from a
mixture of dichloromethane and methanol.
10. Mp: 180–1818C. dH (400.13 MHz, C6D5Cl) 0.93 (s, 6H),
1.23 (s, 6H), 4.51 (s, 2H), 7.08–7.16 (m, 6H), 7.80 (bs, 4H). dC
(100.63 MHz, C6D5Cl) 27.60, 28.89, 30.98, 39.88, 85.45, 123.86,
125.82, 126.02, 127.29, 128.10, 128.30, 129.12, 129.32, 131.93,
135.32. m/z (EI-MS) 456.1 (2, Mþ), 388.0 (12), 356.1 (14), 256.0
(100), 210.0 (29), 167.0 (24), 121.0 (80), 77.0 (15).
11. Mp: 188–1898C. dH (400.13 MHz, C6D5Cl) 1.00 (s, 6H),
1.34 (s, 6H), 3.91 (d, 1H, J 8.8), 4.62 (d, 1H, J 8.8), 6.88–6.94
(m, 4H), 6.99–7.04 (m, 2H), 7.36 (bd, 4H, J 7.7). dC
(100.63 MHz, C6D5Cl) 28.08, 29.39, 33.30, 39.97, 85.33,
123.03, 125.83, 126.03, 126.97, 128.10, 128.30, 128.60,
129.13, 129.32, 130.94, 137.97. m/z (EI-MS) 456.1 (2, Mþ),
388.1 (16), 356.1 (8), 256.1 (85), 210.1 (23), 167.0 (28), 121.0
(100), 77.1 (20).
[13] J. M. Beiner, D. Lecadet, D. Paquer, A. Thuillier, J. Vialle, Bull. Soc.
Chim. Fr. 1973, 1979.
[14] G. Mloston, J. Romanski, E. B. Rusanov, A. N. Chernega, Y. G.
Shermolovich, Zh. Org. Khim. 1995, 31, 1027.
[15] R. A. Hutchinson, J. H. McMinn, D. A. Paquet, S. Beuermann,
C. Jackson, Ind. Eng. Chem. Res. 1997, 36, 1103. doi:10.1021/
IE9604031
[16] R. A. Hutchinson, S. Beuermann, D. A. Paquet, Jr, J. H. McMinn,
Macromolecules 1997, 30, 3490. doi:10.1021/MA970176U
[17] Y. K. Chong, G. Moad, E. Rizzardo, M. A. Skidmore, S. H. Thang,
Macromolecules 2007, 40, 9262. doi:10.1021/MA071100T
[18] B. Sasso, M. Dobinson, P. Hodge, T. Wear, Macromolecules 2010, 43,
7453. doi:10.1021/MA1011683
[19] G. Moad, E. Rizzardo, S. H. Thang, Polym. Int. 2011, 60, 9.
doi:10.1002/PI.2988
[20] A. J. Inglis, S. Sinnwell, T. P. Davis, C. Barner-Kowollik, M. H.
Stenzel, Macromolecules 2008, 41, 4120. doi:10.1021/MA8002328
[21] S. Sinnwell, A. J. Inglis, T. P. Davis, M. H. Stenzel, C. Barner-
Kowollik, Chem. Commun. 2008, 2052. doi:10.1039/B718180A
[22] S. Sinnwell, C. V. Synatschke, T. Junkers, M. H. Stenzel, C. Barner-
Kowollik, Macromolecules 2008, 41, 7904. doi:10.1021/MA8013959
[23] S. Sinnwell, M. Lammens, M. H. Stenzel, F. E. Du Prez, C. Barner-
Kowollik, J. Polym. Sci. A Polym. Chem. 2009, 47, 2207. doi:10.1002/
POLA.23299
[24] S. Sinnwell, A. J. Inglis, M. H. Stenzel, C. Barner-Kowollik,
Macromol. Rapid Commun. 2008, 29, 1090. doi:10.1002/MARC.
200800233
Synthesis of PMMA by RAFT Polymerization
Solutions of 9, ACHN (4.5 mg, 1.84 ꢃ 10ꢀ3 M), MMA (6.552 g,
6.552 M) in benzene (3 mL) were transferred to an ampoule
which was degassed through three freeze–pump–thaw cycles,
sealed under vacuum, and heated at 908C for the stated time. The
polymers were then precipitated twice into n-hexane (100 mL),
filtered, and washed with n-hexane (50 mL) to give the poly-
mers. The polymerization conditions and conversions are
summarized in Table 1.
[25] L. Nebhani, S. Sinnwell, A. J. Inglis, M. H. Stenzel, C. Barner-
Kowollik, L. Barner, Macromol. Rapid Commun. 2008, 29, 1431.
doi:10.1002/MARC.200800244
[26] A. J. Inglis, S. Sinnwell, M. H. Stenzel, C. Barner-Kowollik, Angew.
Chem. Int. Ed. Engl. 2009, 48, 2411. doi:10.1002/ANIE.200805993
[27] L. Nebhani, P. Gerstel, P. Atanasova, M. Bruns, C. Barner-Kowollik,
J.Polym. Sci.APolym. Chem.2009, 47, 7090. doi:10.1002/POLA.23756
[28] L. Nebhani, S. Sinnwell, C. Y. Lin, M. L. Coote, M. H. Stenzel,
C. Barner-Kowollik, J. Polym. Sci. A Polym. Chem. 2009, 47, 6053.
doi:10.1002/POLA.23647
[29] L. Couvreur, C. Lefay, J. Belleney, B. Charleux, O. Guerret,
S. Magnet, Macromolecules 2003, 36, 8260. doi:10.1021/MA035043P
[30] L. Hutson, J. Krstina, C. L. Moad, G. Moad, G. R. Morrow, A. Postma,
E. Rizzardo, S. H. Thang, Macromolecules 2004, 37, 4441. doi:10.1021/
MA049813O
Acknowledgement
The provision of a Julius Career Award to M.C. by the CSIRO Office of the
Chief Executive (OCE) Science Team is acknowledged.
References
[1] A. Katchalsky, H. Eisenberg, J. Polym. Sci., Polym. Phys. Ed. 1951, 6,
145. doi:10.1002/POL.1951.120060202
[31] F. Arndt, in Organic Synthesis (Collective Vol. 2) (Ed. A. H. Blatt)
1943, pp. 165–167 (Wiley: New York).
[2] A. D. Jenkins, R. I. Jones, G. Moad, Pure Appl. Chem. 2010, 82, 483.
doi:10.1351/PAC-REP-08-04-03
[32] S. H. Thang, Y. K. Chong, R. T. A. Mayadunne, G. Moad, E. Rizzardo,
Tetrahedron Lett. 1999, 40, 2435. doi:10.1016/S0040-4039(99)00177-X