LETTER
Allylation of Aldehydes with Allyltributylstannane Promoted by MgI2·(OEt)n
67
(16) (a) Corey, E. J.; Li, W. D.; Reichard, G. A. J. Am. Chem. Soc.
1998, 120, 2330. (b) Denmark, S. E.; Stavenger, R. A. Acc.
Chem. Res. 2000, 33, 432. (c) Denmark, S. E.; Wynn, T.
J. Am. Chem. Soc. 2001, 123, 6199.
Acknowledgment
Zhejiang University of Technology Scholars Program is gratefully
acknowledged.
(17) (a) Corey, E. J.; Ishihara, K. Tetrahedron Lett. 1992, 33,
6807. (b) Corey, E. J.; Imai, N.; Zhang, H. Y. J. Am. Chem.
Soc. 1991, 113, 728.
References and Notes
(18) Typical Procedure for the Synthesis of Homoallylic
Alcohols: To a stirred solution of benzaldehyde (0.5 mmol)
in CH2Cl2 (3 mL) was added a freshly prepared solution of
MgI2·(OEt)n in Et2O–benzene (1:2, 1.0 M, 0.5 mL) at r.t.
After stirring for 10 min, a solution of allyltributylstannane
(0.6 mmol) in CH2Cl2 (2 mL) was added dropwise via a
syringe. The resulting homogeneous reaction mixture was
stirred at r.t. for 3 h and quenched with distillated H2O.
Extractive workup with Et2O and chromatographic
purification of the crude product on silica gel gave the
homoallylic alcohol 1a in 92% yield.
(1) Corma, A.; Garcia, H. Chem. Rev. 2003, 103, 4307.
(2) Yamamoto, H. Lewis Acids in Organic Synthesis; Wiley-
VCH: Weinheim, 2000.
(3) Kobayashi, S.; Sugiura, M.; Kitagawa, H.; Lam, W. W. L.
Chem. Rev. 2002, 102, 2227.
(4) Nishigaichi, Y.; Takuwa, A.; Naruta, Y.; Maruyama, K.
Tetrahedron 1993, 49, 7395.
(5) Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207.
(6) Marshall, J. A. Chem. Rev. 1996, 96, 31.
(7) (a) Nicolaou, K. C.; Kim, D. W.; Baati, R. Angew. Chem. Int.
Ed. 2002, 41, 3701. (b) Hornberger, K. R. C.; Hamblet, L.;
Leighton, J. L. J. Am. Chem. Soc. 2000, 122, 12894.
(c) Felpin, F. X.; Lebreton, J. J. Org. Chem. 2002, 67, 9192.
(d) Jaber, J. J.; Mitsui, K.; Rychnovsky, S. D. J. Org. Chem.
2001, 66, 4679. (e) Balskus, E. P.; Mendez-Andino, J.;
Arbit, R. M.; Paquette, L. A. J. Org. Chem. 2001, 66, 6695.
(f) Chen, G. M.; Brown, H. C.; Ramachandran, P. V. J. Org.
Chem. 1999, 64, 721. (g) Lee, K. Y.; Oh, C.-Y.; Ham, W.-H.
Org. Lett. 2002, 4, 4403.
(8) (a) Nishiyama, Y.; Kakushou, F.; Sonoda, N. Tetrahedron
Lett. 2005, 46, 787. (b) Yanagisawa, A.; Morodome, M.;
Nakashima, H.; Yamamoto, H. Synlett 1997, 1309.
(c) Yadav, J. S.; Reddy, B. V. S.; Krishna, A. D.; Sadasiv,
K.; Chary, C. J. Chem. Lett. 2003, 32, 248. (d) Teo, Y. C.;
Tan, K. T.; Loh, T. P. Chem. Commun. 2005, 1318.
(e) Aspinall, H. C.; Bissett, J. S.; Greeves, N.; Levin, D.
Tetrahedron Lett. 2002, 43, 319. (f) Andrade, C. K. Z.;
Azevedo, N. R.; Oliveira, G. R. Synthesis 2002, 928.
(g) Choudary, B. M.; Sridhar, C.; Sekhar, C. V. R. Synlett
2002, 1694. (h) Hamasaki, S.; Chounan, Y.; Horino, H.;
Yamamoto, Y. Tetrahedron Lett. 2000, 41, 9883.
(i) Kobayashi, S.; Iwamoto, S.; Nagayama, S. Synlett 1997,
1099. (j) Kobayashi, S.; Aoyama, N.; Manabe, K. Synlett
2002, 483.
(19) Selected spectroscopic data:
Compound 1a:20 1H NMR (400 MHz, CDCl3): d = 2.13 (br
s, 1 H), 2.47–2.52 (m, 2 H), 4.72 (t, J = 6.5 Hz, 1 H), 5.11–
5.19 (m, 2 H), 5.76–5.85 (m, 1 H), 7.25–7.29 (m, 1 H), 7.32–
7.35 (m, 4 H). Compound 1b:10 1H NMR (400 MHz, CDCl3):
d = 2.15 (br s, 1 H), 2.43–2.52 (m, 1 H), 2.54–2.62 (m, 1 H),
4.85–4.89 (m, 1 H), 5.18–5.22 (m, 2 H), 5.75–5.84 (m, 1 H),
7.53 (t, J = 8.0 Hz, 1 H), 7.70 (d, J = 7.6 Hz, 1 H), 8.14 (d,
J = 8.1 Hz, 1 H), 8.25 (s, 1 H). Compound 1c:10 1H NMR
(400 MHz, CDCl3): d = 2.48–2.63 (m, 2 H), 2.82 (br s, 1 H),
4.90 (t, J = 6.2 Hz, 1 H), 5.17–5.22 (m, 2 H), 5.77–5.87 (m,
1 H), 7.56 (d, J = 8.0 Hz, 2 H), 8.21 (d, J = 8.0 Hz, 2 H).
Compound 1d:21 1H NMR (400 MHz, CDCl3): d = 2.45–2.49
(m, 2 H), 3.77 (s, 3 H), 4.65 (t, J = 6.5 Hz, 1 H), 5.08–5.16
(m, 2 H), 5.72–5.82 (m, 1 H), 6.78 (d, J = 8.2 Hz, 1 H), 6.88–
6.91 (m, 2 H), 7.23 (t, J = 8.0 Hz, 1 H). Compound 1e:22 1
H
NMR (400 MHz, CDCl3): d = 2.32–2.41 (m, 2 H), 2.58–2.63
(m, 1 H), 5.12–5.20 (m, 3 H), 5.79–5.90 (m, 1 H), 7.16–7.33
(m, 3 H), 7.54 (d, J = 7.6 Hz, 1 H). Compound 1f:9 1H NMR
(400 MHz, CDCl3): d = 2.31 (d, J = 2.9 Hz, 1 H), 2.41–2.49
(m, 2 H), 4.67–4.69 (m, 1 H), 5.12–5.16 (m, 2 H), 5.72–5.79
(m, 1 H), 7.25–7.31 (m, 4 H). Compound 1g:10 1H NMR (400
MHz, CDCl3): d = 2.21 (br s, 1 H), 2.33 (s, 3 H), 2.45–2.50
(m, 2 H), 4.66 (t, J = 6.5 Hz, 1 H), 5.08–5.16 (m, 2 H), 5.74–
5.82 (m, 1 H), 7.14 (d, J = 7.7 Hz, 2 H), 7.22 (d, J = 7.5 Hz,
2 H). Compound 1h:20 1H NMR (400 MHz, CDCl3): d = 2.09
(br s, 1 H), 2.35–2.44 (m, 2 H), 4.34 (br s, 1 H), 5.14–5.19
(m, 2 H), 5.79–5.90 (m, 1 H), 6.23 (dd, J = 7.9, 15.9 Hz, 1
H), 6.59 (d, J = 15.9 Hz, 1 H), 7.21–7.37 (m, 5 H).
(9) Yadav, J. S.; Reddy, B. V. S.; Kondaji, G.; Reddy, J. S. S.
Tetrahedron 2005, 61, 879.
(10) Bartoli, G.; Bosco, M.; Guiliani, A.; Marcantoni, E.;
Palmieri, A.; Petrini, M.; Sambri, L. J. Org. Chem. 2004, 69,
1290.
(11) (a) Li, W. D.; Zhang, X. X. Org. Lett. 2002, 4, 3485.
(b) Zhang, X. X.; Li, W. D. Chin. Chem. Lett. 2003, 14, 800.
(12) Arkley, V.; Attenburrow, J.; Gregory, G. I.; Walker, T.
J. Chem. Soc. 1962, 1260.
(13) For examples of allylation reactions of ketones, see:
(a) Kobayashi, S.; Aoyama, N.; Manabe, K. Synlett 2002,
483. (b) Hanawa, H.; Kii, S.; Maruoka, K. Adv. Synth. Catal.
2001, 343, 57. (c) Hamasaki, R.; Chounan, Y.; Horino, H.;
Yamamoto, Y. Tetrahedron Lett. 2000, 41, 9883.
(14) (a) Tobe, M. L.; Burgess, J. Inorganic Reaction
Mechanisms; Addison Wesley Longman: New York, 1999,
Chap. 7. (b) Wehmschulte, R. J.; Twamley, B.; Khan, M. A.
Inorg. Chem. 2001, 40, 6004.
(15) (a) Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207.
(b) Nishigaichi, Y.; Takuwa, A.; Naruta, Y.; Maruyama, K.
Tetrahedron 1993, 49, 7395. (c) Marshall, J. A. Chem. Rev.
1996, 96, 31. (d) Inoue, K.; Yasuda, M.; Baba, A. Synlett
1997, 699. (e) Andrade, C. K. Z.; Azevedo, N. R.; Oliveira,
G. R. Synthesis 2002, 928. (f) Choudary, B. M.; Sridhar, C.;
Sekhar, C. V. R. Synlett 2002, 1694.
Compound 1i:23 1H NMR (400 MHz, CDCl3): d = 1.66 (br s,
1 H), 1.70 (d, J = 6.5 Hz, 3 H), 2.24–2.35 (m, 2 H), 4.08–4.15
(m, 1 H), 5.11–5.17 (m, 2 H), 5.51 (dd, J = 6.8, 15.2 Hz, 1
H), 5.65–5.73 (m, 1 H), 5.75–5.85 (m, 1 H). Compound 1j:10
1H NMR (400 MHz, CDCl3): d = 1.73–1.81 (m, 2 H), 1.89
(br s, 1 H), 2.14–2.21 (m, 1 H), 2.26–2.32 (m, 1 H), 2.64–
2.71 (m, 1 H), 2.75–2.83 (m, 1 H), 3.64–3.70 (m, 1 H), 5.10–
5.15 (m, 2 H), 5.74–5.85 (m, 1 H), 7.15–7.30 (m, 5 H).
Compound 1k:24 1H NMR (400 MHz, CDCl3): d = 0.86 (t,
J = 7.0 Hz, 3 H), 1.21–1.50 (m, 12 H), 1.65 (br s, 1 H), 2.05–
2.21 (m, 1 H), 2.27–2.38 (m, 1 H), 3.58–3.72 (m, 1 H), 5.12–
5.19 (m, 2 H), 5.77–5.95 (m, 1 H). Compound 1l:22 1H NMR
(400 MHz, CDCl3): d = 0.90 (t, J = 7.0 Hz, 3 H), 1.24–1.48
(m, 6 H), 1.72 (br s, 1 H), 2.12–2.16 (m, 1 H), 2.15–2.33 (m,
1 H), 3.60–3.65 (m, 1 H), 5.10–5.17 (m, 2 H), 5.77–5.90 (m,
1 H). Compound 1m:25 [a]24D –21.2 (c = 1.02, CHCl3). 1H
NMR (500 MHz, CDCl3): d = 1.35 (s, 9 H), 2.20–2.30 (m, 2
H), 2.83–2.94 (m, 2 H), 3.59 (td, J = 1.5, 7.0 Hz, 1 H), 3.73
(br q, J = 8.0 Hz, 1 H), 4.88 (d, J = 9.5 Hz, 1 H), 5.10–5.15
(m, 2 H), 5.70–5.80 (m, 1 H), 7.18–7.32 (m, 5 H).
Synlett 2008, No. 1, 65–68 © Thieme Stuttgart · New York