Scheme 1. Synthesis of the Triazatruxene-Linked Bodipy Derivatives
and organic-light-emitting diodes5 and self-assembled hexa-
functionalized TAT frameworks can be used to produce
electroactive discotic liquidꢀcrystalline materials with
high hole mobility.6 Surprisingly, despite these various
applications, the chemistry of TAT is limited largely to
that of homohexa- and homotrisubstituted derivatives,
and applications in solar cells have not been demonstrated
up to now, probably due to the limited absorption in the
visible portion of the solar spectrum. Our choice of TAT
was motivated by its high charge carrier mobilities in thin
films and its semiconductor character, attractive redox prop-
erties, and strong fluorescence.7 Here, we report that mono-
substituted TAT derivatives can be prepared in a controlled
manner and cross-linked to boronꢀdifluorodipyrromethene
(Bodipy) dyes to produce photoactive layers in bulk
heterojunction (BHJ) solar cells. As simple Bodipy deri-
vatives themselves are active materials in dye-sensitized
solar cells (DSSC)8 and BHJ solar cells,9 it was tempting to
try to link the photosensitizer (Bodipy) to TAT while
conserving the charge carrier mobility. Two strategies were
devised for the preparation of 3-bromo-5,10,15-triazatrux-
ene. The first requires the preparation of 3,8,15-tribromo-
5,10,15-triazatruxene and subsequent dehalogenation, and
the second necessitates monohalogenation of 5,10,15-tria-
zatruxene (Scheme 1). Asa first synthetic approach, a four-
step protocol starting from 2-oxindole, followed by alkyla-
tion with bromododecane giving 1, followed by a selective
bromination in the 5-position affording 2 was developed.
A final trimerization in neat POCl3 provided the target
compound 3. Such cyclocondensation is the most common
route to triazatruxene derivatives.10,5 The use of reductive
dehalogenation was based on previous work4b and was
performed in refluxing THF using formate salts as the
reducing agent and Pd supported on charcoal as catalyst.
The reaction was not selective but provided the target
monobromo derivative 5 and the dibromo compound in
27 and 20% yields, respectively. Cross-coupling of 5 with
(4) (a) Ji, L.; Fang, Q.; Yuan, M.-S.; Liu, Z.-Q.; Shen, Y. X.; Chen,
H.-F. Org. Lett. 2010, 12, 5192. (b) Shao, J.; Guan, Z.; Yan, Y.; Jiao, C.;
Xu, Q.-H.; Chi, C. J. Org. Chem. 2011, 76, 780.
(5) Lai, W.-Y.; He, Q.-Y.; Zhu, R.; Chen, Q.-Q.; Huang, W. Adv.
Funct. Mater. 2008, 18, 265.
(6) (a) Gomez-Lor, B.; Alonso, B.; Omenat, A.; Serrano, J. L. Chem.
Commun. 2006, 5012. (b) Luo, J.; Zhao, B.; Shao, J.; Lim, K. A.; Chan,
H. S. S. O.; Chi, C. J. Mater. Chem. 2009, 19, 8327. (c) Zhao, B.; Liu, B.;
Png, R. Q.; Zhang, K.; Lim, K. A.; Luo, J.; Shao, J.; Ho, P. K. H.; Chi,
C.; Wu, J. Chem. Mater. 2010, 22, 435.
(7) Talarico, M.; Termine, R.; Garcia-Frutos, E. M.; Omenat, A.;
Serrano, J. L.; Gomez-Lor, B.; Golemme, A. Chem. Mater. 2008, 20,
6589.
(8) (a) Erten-Ela, S.; Yilmaz, D.; Icli, B.; Dede, Y.; Icli, S.; Akkaya,
U. E. Org. Lett. 2008, 10, 3299. (b) Kolemen, S.; Cakmak, Y.; Erten-Ela,
S.; Altay, Y.; Brendel, J.; Thelakkat, M.; Akkaya, E. U. Org. Lett. 2010,
12, 3812. (c) Kolemen, S.; Bozdemir, O. A.; Cakmak, Y.; Barin, G.;
Erten-Ela, S.; Marszalek, M.; Yum, J.-H.; Zakeeruddin, S. M.; Nazeer-
(9) (a) Rousseau, T.; Cravino, A.; Roncali, J.; Bura, T.; Ulrich, G.;
Ziessel, R. Chem. Commun. 2009, 1673–1675. (b) Rousseau, T.; Cravino,
A.; Roncali, J.; Bura, T.; Ulrich, G.; Ziessel, R. J. Mater. Chem. 2009, 16,
2298–2300. (c) Rousseau, T.; Cravino, A.; Ripaud, E.; Leriche, P.; Rihn,
S.; De Nicola, A.; Ziessel, R.; Roncali, J. Chem. Commun. 2010, 46, 5082.
(10) Hiyoshi, H.;Kumagai, H.;Ooi, H. Pat. Appl. Publ. WO2005077956,
2005.
€
uddin, M. K.; Gratzel, M.; Akkaya, E. U. Chem. Sci. 2011, 2, 949.
Org. Lett., Vol. 13, No. 22, 2011
6031