ORGANIC
LETTERS
2011
Vol. 13, No. 10
2738–2741
Aminothiocarbamate-Catalyzed
Asymmetric Bromolactonization of
1,2-Disubstituted Olefinic Acids
Chong Kiat Tan, Ling Zhou, and Ying-Yeung Yeung*
3 Science Drive 3, Department of Chemistry, National University of Singapore,
Singapore 117543
Received March 31, 2011
ABSTRACT
An efficient and enantioselective bromolactonization of 1,2-disubstituted olefinic acids using an amino-thiocarbamate catalyst has been
developed, resulting in the formation of δ-lactones containing two chiral centers with up to 99% yield, 95% ee.
Halolactonization is an important class of organic
transformation under the umbrella of halonium-induced
cyclization. The resulting halolactones are of particular
interest to synthetic chemists because of the importance
of the lactone moieties that pervades a wide spectrum of
molecular structures (e.g., the fundamental unit of many
natural products). In addition, the halogen substituents
can be readily modified to other useful functional groups
(e.g., by nucleophilic substitution). The importance of
halolactonization is underscored by the large number
of applications to the synthesis of useful building
blocks and biologically active molecules.1,2 Although
halolactonizations have been studied for decades, their
modifications to the enantioselective versions have been
problematic.3,4 Recently, several elegant reports ap-
peared that provided access to a number of valuable
halolactones with a practical level of enantioselectivities.5
However, the olefinic moieties in the substrates are
limited to 1,1-disubstituted alkenes that result in γ- and
δ-lactones containing quaternary centers. Halolactoniza-
tions that involve substrates with 1,2-disubstituted olefi-
nic moieties6 are attractive targets since the resulting
lactones contain two stereogenic centers with a well-
defined esterÀhalogen antirelationship; asymmetric
halolactonization of this class of substrates remains un-
common, and until now only a substoichiometric cataly-
tic and two stoichiometric chiral auxiliary-controlled
~
ꢀ
(1) (a) Rodrıguez, F.; Fananas, F. J. In Handbook of Cyclization
Reactions; Ma, S., Ed.; Wiley-VCH: New York, 2010; Vol. 4, pp 10À20. (b)
Ranganathan, S.; Muraleedharan, K. M.; Vaish, N. K.; Jayaraman, N.
Tetrahedron 2004, 60, 5273–5308. (c) Lava, M. S.; Banerjee, A. K.;
Cabrera, E. V. Curr. Org. Chem. 2009, 13, 720–730.
(2) Examples of related halonium-induced cyclizations: (a) Kang,
S. H.; Lee, S. B.; Park, C. M. J. Am. Chem. Soc. 2003, 125, 15748–15749.
(b) Sakakura, A.; Ukai, A.; Ishihara, K. Nature 2007, 445, 900–903. (c)
Snyder, S. A.; Treitler, D. Angew. Chem., Int. Ed. 2009, 48, 7899–7903.
(d) Snyder, S. A.; Treitler, D. S.; Brucks, A. P. J. Am. Chem. Soc. 2010,
132, 14303–14314. (e) Hennecke, U.; Muller, C. H.; Frohlich, R. Org.
Lett. 2011, 13, 860–863.
(3) Early examples of asymmetric halolactonization reactions: (a)
Haas, J.; Piguel, S.; Wirth, T. Org. Lett. 2002, 4, 297–300. (b) Haas, J.;
Bissmire, S.; Wirth, T. Chem.;Eur. J. 2005, 11, 5777–5785.
(4) For a mechanistic discussion on the problems of enantioselective
halocyclization, see:(a) Brown, R. S. Acc. Chem. Res. 1997, 30, 131–137.
(b) Cui, X.-L.; Brown, R. S. J. Org. Chem. 2000, 65, 5653–5658. (c)
Denmark, S. E.; Burk, M. T.; Hoover, A. J. J. Am. Chem. Soc. 2010, 132,
1232–1233.
(5) (a) Whitehead, D. C.; Yousefi, R.; Jaganathan, A.; Borhan, B. J.
Am. Chem. Soc. 2010, 132, 3298–3300. (b) Zhang, W.; Zheng, S.; Liu, N.;
Werness, J. B.; Guzei, I. A.; Tang, W. J. Am. Chem. Soc. 2010, 132, 3664–
3665. (c) Zhou, L.; Tan, C. K.; Jiang, X.; Chen, F.; Yeung, Y.-Y. J. Am.
Chem. Soc. 2010, 132, 15474–15476. (d) Veitch, G. E.; Jacobsen, E. N.
Angew. Chem., Int. Ed. 2010, 49, 7332–7335. (e) Murai, K.; Matsushita,
T.; Nakamura, A.; Fukushima, S.; Shimura, M.; Fujioka, H. Angew.
Chem., Int. Ed. 2010, 49, 9174–9177. (f) Ning, Z.; Jin, R.; Ding, J.; Gao,
L. Synlett 2009, 2291–2294. (g) Chen, G.; Ma, S. Angew. Chem., Int. Ed.
2010, 49, 8306–8308.
(6) During the preparation of this paper, an elegant report appeared
in the literature that is related to the asymmetric co-chlorination of 1,
2-disubstituted olefins: Jaganathan, A.; Garzan, A.; Whitehead, D. C.;
Staples, R. J.; Borhan, B. Angew Chem., Int. Ed. 2011, 50, 2593–2596.
€
€
r
10.1021/ol200840e
Published on Web 04/26/2011
2011 American Chemical Society