ACS Catalysis
Research Article
Scheme 4. Michael Addition of O’Donnell Substrate to Methyl Acrylate, Catalyzed by Λ(R,R)-1d
(9) Mahlau, M.; List, B. Angew. Chem., Int. Ed. 2013, 52, 518−533.
(10) Lacour, L.; Moraleda, D. Chem. Commun. 2009, 7073−7089.
(11) Dolling, U.-H.; Davies, P.; Grabowski, E. J. J. Am. Chem. Soc.
1984, 106, 446−447.
central metal ion a decisive influence on the catalytic activity,
the catalyst would be expected to have much higher activity.
Michael addition was also catalyzed by 1d with the same
sense of chirality of the final product as in the case of alkyl
halide alkylation. Such behavior is expected for classical APTC
reactions.
(12) Howell, G. P. Org. Process Res. Dev. 2012, 16, 1258−1272.
(13) Denmark, S. E.; Gould, N. D.; Wolf, L. M. J. Org. Chem. 2011,
76, 4260−4336.
(14) Denmark, S. E.; Gould, N. D.; Wolf, L. M. J. Org. Chem. 2011,
76, 4337−4357.
CONCLUSIONS
■
(15) Ooi, T.; Kameda, M.; Maruoka, K. J. Am. Chem. Soc. 1999, 121,
6519−6500.
The experiments demonstrated that the strategy of using chiral,
stereochemically inert, positively charged complexes of CoIII as
a catalyst system in the benchmark reaction of O’Donnell
substrate alkylation under APTC conditions was successful.
The complexes are easy to prepare and modify. Another feature
of the catalysts not present in chiral ammonium cations was
their hydrogen bond donating properties and potential redox
properties. Work is ongoing to further modify the complexes
and explore their applications in other areas of organic catalysis
and anion coordination applications.
(16) Lygo, B.; Allbutt, B.; James, R. S. Tetrahedron Lett. 2003, 44,
5629−5632.
(17) Shibuguchi, T.; Fukuta, Y.; Akachi, Y.; Sekine, A.; Ohshima, T.;
Shibasaki, M. Tetrahedron Lett. 2002, 43, 9539−9543.
(18) Arai, S.; Truji, R.; Nishida, A. Tetrahedron Lett. 2002, 43, 9535−
9537.
(19) Novacek, J.; Waser, M. Eur. J. Org. Chem. 2013, 637−648.
(20) Belokon, Y. N.; Maleev, V. I.; Kataev, D. A.; Mal’fanov, I. L.;
Bulychev, A. G.; Moskalenko, M. A.; Saveleva, T. F.; Skrupskaya, T. V.;
Lyssenko, K. A.; Godovikov, I. A.; North, M. Tetrahedron: Asymmetry
2008, 19, 822−831.
(21) Belokon, Y. N.; Maleev, V. I.; Kataev, D. A.; Saveleva, T. F.;
Skrupskaya, T. V.; Nelyubina, Y. V.; North, M. Tetrahedron: Asymmetry
2009, 20, 1746−1752.
(22) Maleev, V. I.; Skrupskaya, T. V.; Yashkina, L. Y.; Mkrtchyan, A.
F.; Saghyan, A. S.; Il’in, M. M.; Chusov, D. A. Tetrahedron: Asymmetry
2013, 24, 178−183.
(23) Belokon, Y. N.; Larionov, V. A.; Mkrtchan, A. F.; Khrustalev, V.
N.; Nijland, A.; Saghiyan, A. S.; Godovikov, I. A.; Peregudov, A. S.;
Babievsky, K. K.; Ikonnikov, N. S.; Maleev, V. I. Izv. Akad. Nauk, Ser.
Khim. 2012, 12, 2231−2239 (in Russian). Russ. Chem. Bull. 2012, in
press (in press).
ASSOCIATED CONTENT
* Supporting Information
■
S
All procedures for the preparation of novel complexes 1−5 and
their characterization; general procedures alkylation and
Michael addition of glycine tert-butyl ester benzophenone
Schiff base; proton and carbon NMR as well as IR and CD
spectra of novel reported compounds 1−5; X-ray diffraction
data for complexes 1d and 3; and CIF files of single crystals 1d
and 3. This material is available free of charge via the Internet at
(24) Gale, P. Acc. Chem. Res. 2011, 44, 216−226.
AUTHOR INFORMATION
Corresponding Author
Notes
■
(25) Gale, P. Chem. Commun. 2011, 47, 82−86.
(26) Kemmitt, R. D. W.; Russell, D. R. In Comprehensive
Organometallic Chemistry. The Synthesis, Reactions and Structures of
Organometallic Compounds; Abel, E. W., Wilkinson, G., Stone, F. G. A.,
Eds.; Pergamon Press Lt: New York, 1982; Vol. 5, pp 2−264.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors gratefully acknowledge financial support from
RFBR, research project no. 13-03-92601-KO-a. The authors are
also grateful to Dr. Michail M. Il’yin for HPLC analysis, Dr.
Kirill K. Babievsky for CD measurments, and Dr. Olga L.
Lependina for X-ray fluoresence analysis.
REFERENCES
■
(1) Donnell, M. J. Aldrichimica Acta 2001, 34, 3−15.
(2) Lygo, B.; Andrews, B. I. Acc. Chem. Res. 2004, 37, 518−526.
(3) Ooi, T.; Maruoka, K. Acc. Chem. Res. 2004, 37, 526−533.
(4) Hashimoto, T.; Maruoka, K. Chem. Rev. 2007, 107, 5656−5682.
(5) Maruoka, K.; Ooi, T.; Kano, T. Chem. Commun. 2007, 1487−
1495.
(6) Maruoka, K. Chem. Rec. 2010, 10, 254−259.
(7) Shirakawa, S.; Maruoka, K. Angew. Chem., Int. Ed. 2013, 52,
4312−4348.
(8) Brak, K.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2013, 52, 534−
561.
1955
dx.doi.org/10.1021/cs400409d | ACS Catal. 2013, 3, 1951−1955