Journal of the American Chemical Society
COMMUNICATION
(cf. Scheme 1) and that the role of the heterocyclic carbene is not
limited to activation of the silylboron reagent. Design and
development of catalytic reactions that involve NHC-activation
of other B-based reagents may thus be feasible; investigations
along these lines are in progress. Moreover, study of the mech-
anism of the metal-free transformations, including identification
of the origins of enantioselectivity, the reactivity differences
among various substrate classes, and the critical role of water,
is underway.
146, 87. (d) Ito, H.; Ishizuka, T.; Tateiwa, J.-i.; Sonoda, M.; Hosomi, A.
J. Am. Chem. Soc. 1998, 120, 11196. (e) Ogoshi, S.; Tomiyasu, S.; Morita,
M.; Kurosawa, H. J. Am. Chem. Soc. 2002, 124, 11598. (f) Clark, C. T.;
Lake, J. F.; Scheidt, K. A. J. Am. Chem. Soc. 2004, 126, 84.
(8) For catalytic enantioselective silyl conjugate addition methods
with metal-containing catalysts, see: (a) Hayashi, T.; Matsumoto, Y.; Ito,
Y. J. Am. Chem. Soc. 1988, 110, 5579. (b) Matsumoto, Y.; Hayashi, T.;
Ito, Y. Tetrahedron 1994, 50, 335. (c) Walter, C.; Auer, G.; Oestreich, M.
Angew. Chem., Int. Ed. 2006, 45, 5675. (d) Walter, C.; Oestreich, M.
Angew. Chem., Int. Ed. 2008, 47, 3818. (e) Walter, C.; Fr€ohlich, R.;
Oestreich, M. Tetrahedron 2009, 65, 5513.(f) Ibrahem, I.; Santoro, S.;
Himo, F.; Cꢀordova, A. Adv. Synth. Catal. 2011, 353, 245. The last four
studies involve the use of 1 as a reagent.
’ ASSOCIATED CONTENT
S
(9) See the Supporting Information for details.
Supporting Information. Experimental procedures and
b
(10) For an in-depth analysis of the concept of Lewis base activation
and its use in chemical synthesis, see: Denmark, S. E.; Beutner, G. L.
Angew. Chem., Int. Ed. 2008, 47, 1560.
spectral, analytical data for all reaction products. This material is
(11) For example, see: (a) Van Veldhuizen, J. J.; Campbell, J. E.;
Giudici, R. E.; Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 6877.
(b) Gillingham, D. G.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2007,
46, 3860. (c) Brown, M. K.; Hoveyda, A. H. J. Am. Chem. Soc. 2008,
130, 12904. (d) Lee, Y.; Hoveyda, A. H. J. Am. Chem. Soc. 2009,
131, 3160. (e) O’Brien, J. M.; Lee, K-s.; Hoveyda, A. H. J. Am. Chem.
Soc. 2010, 132, 10630. (f) Dabrowski, J. A.; Gao, F.; Hoveyda, A. H.
J. Am. Chem. Soc. 2011, 133, 4778.
(12) Control experiments indicate that the more facile β-silylketone
formation is not due to involvement of the corresponding silyl hydride
that might be generated through reaction of 1 with water.
(13) Subsequent optimization studies indicated that use of 3:1
H2O/thf, versus an equal mixture, as used in the studies summarized
in Table 1, affords improved efficiency and enantioselectivity. For
example, reaction in 100% water results in 96% conversion but affords
4 in 75:25 er in the presence of the NHC catalyst derived from 9b.
Solutions appear as emulsions while stirring continues but become
biphasic while standing.
(14) Initial mechanistic studies indicate that indeed NHCs undergo
decomposition under the reaction conditions and the resulting products
promote nonselective conjugate additions albeit at a slower rate (vs
NHC-catalyzed). Details of these investigations will be disclosed in the
full account of this work.
(15) The reason for the higher catalyst loadings might partly be
because, with slower SCA reactions, decomposition of the imidazolinium
salt/NHC through reaction with water becomes more competitive. Initial
mechanistic studies indicate that the derived products promote reactions
with little or no enantioselectivity. Details will be disclosed in the full
account of this work. For detailed studies on hydrolysis of imidazolium
salts, see: Hollꢀoczki, O.; Terleczky, P.; Szieberth, D.; Mourgas, G.; Gudat,
D.; Nyulꢀaszi, L. J. Am. Chem. Soc. 2011, 133, 780.
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
Financial support was provided by the NIH (GM-57212) and
the NSF (CHE-0715138). We are grateful to Maitane Fernandez
for valuable experimental assistance and to Dr. Kang-sang Lee,
Hao Wu, Dr. Adil R. Zhugralin, and Dr. Simon J. Meek for helpful
discussions. Mass spectrometry facilities at Boston College are
supported by the NSF (DBI-0619576).
’ REFERENCES
(1) Lee, K-s.; Zhugralin, A. R.; Hoveyda, A. H. J. Am. Chem. Soc.
2009, 131, 7253.
(2) For a review on the utility of silylborane reagents in chemical
synthesis, see: Ohmura, T.; Suginome, M. Bull. Chem. Soc. Jpn. 2009, 82, 29.
(3) For reviews on the use of organosilanes in organic synthesis, see:
(a) Chan, T. H.; Wang, D. Chem. Rev. 1992, 92, 995. (b) Jones, G. R.;
Landais, Y. Tetrahedron 1996, 52, 7599. (c) Fleming, I.; Barbero, A.;
Walter, D. Chem. Rev. 1997, 97, 2063. (d) Suginome, M.; Ito, Y. Chem.
Rev. 2000, 100, 3221. For a review on the utility of β-silylcarbonyls, see:
(e) Fleming, I. In Science of Synthesis; Fleming, I., Ed.; Thieme: Stuttgart,
Germany, 2002; Vol. 4, p 927. For more recent studies involving the
use of β-silylcarbonyls in chemical synthesis, see: (f) Tietze, L. F.;
T€olle, N.; Kratzert, D.; Stalke, D. Org. Lett. 2009, 11, 5230.
(4) For an NHCÀCu-catalyzed enantioselective method for silyl
conjugate additions to various unsaturated ketones and esters, see:
(a) Lee, K-s.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 2898. For an
application of the method, see:(b) Harb, H. Y.; Collins, K. D.; Garcia
Altur, J. V.; Bowker, S.; Campbell, L.; Procter, D. J. Org. Lett. 2010,
12, 5446.
(16) (a) Breslow, R. J. Am. Chem. Soc. 1958, 80, 3719. (b) Stetter, H.
Angew. Chem., Int. Ed. Engl. 1976, 15, 639. For recent applications of
catalysts that likely proceed through Breslow-type intermediates, see:
(c) Jiang, H.; Gschwend, B.; Albrecht, L.; Jørgensen, K. A. Org. Lett.
2010, 12, 5052 and references cited therein.
(17) For example, treatment of benzaldehyde with 5.0 mol % 5 and
15 mol % dbu and 1.1 equiv of 1 (3:1 H2O/thf, 22 °C, 12 h) leads to the
formation of the corresponding silylcarbinol (73% conv by 1H NMR analysis).
(18) Enantiomerically enriched β-silylcarbonyls have been prepared
by methods other than silyl conjugate additions. Through catalytic
enantioselective conjugate hydride additions to trisubstituted Si-sub-
stituted enones: (a) Lipshutz, B. H.; Tanaka, N.; Taft, B. R.; Lee, C.-T.
Org. Lett. 2006, 8, 1963. Through catalytic conjugate additions of alkyl,
aryl, or vinyl groups, respectively, to silyl-substituted enones: (b) Shintani,
R.; Okamoto, K.; Hayashi, T. Org. Lett. 2005, 7, 4757. (c) Balskus, E. P.;
Jacobsen, E. N. J. Am. Chem. Soc. 2006, 128, 6810. (d) Kacprzynski, M. A.;
Kazane, S. A.; May, T. L.; Hoveyda, A. H. Org. Lett. 2007, 9, 3187.
(e) Shintani, R.; Ichikawa, Y.; Hayashi, T.; Chen, J.; Nakao, Y.; Hiyama, T.
Org. Lett. 2007, 9, 4643.
(5) For a review on NHC-catalyzed processes in chemical synthesis,
see: Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606.
(6) For examples of NHC-catalyzed reactions performed in the
presence of water, see: (a) Sohn, S. S.; Bode, J. W. Angew. Chem., Int. Ed.
2006, 45, 6021. (b) He, M.; Beahm, B. J.; Bode, J. W. Org. Lett. 2008,
10, 3817. (c) Vora, H. U.; Rovis, T. J. Am. Chem. Soc. 2010, 132, 2860.
For studies regarding the stability of NHCs in water, see:(d) Amyes,
T. L.; Diver, S. T.; Richard, J. P.; Rivas, F. M.; Toth, K. J. Am. Chem. Soc.
2004, 126, 4366.
(7) Various nonenantioselective methods that involve metal-based
catalysts and afford β-silylcarbonyls have been disclosed. For example,
see: Conjugate silane additions: (a) Lipshutz, B. H.; Sclafani, J. A.;
Takanami, T. J. Am. Chem. Soc. 1998, 120, 4021. (b) Auer, G.; Weiner,
B.; Oestreich, M. Synthesis 2006, 2113. Conjugate disilane additions:
(c) Tamao, K.; Okazaki, S.; Kumada, M. J. Organomet. Chem. 1978,
7715
dx.doi.org/10.1021/ja203031a |J. Am. Chem. Soc. 2011, 133, 7712–7715