2238
O. Mendoza et al. / Tetrahedron Letters 52 (2011) 2235–2239
Table 4
and economical, (f) yields are high, (g) the scope is fairly broad and
(h) it is environmentally friendly.
Reactions of arenes and heteroarenes with heteroaryl methylacetates
Electrophile
Arene
OMe
Product
Cat.a
Yieldb (%)
Acknowledgment
1
2
HOTf
HNTf2
0
98
S
S
OAc
The authors are grateful to Sanofi-Aventis and IECB for generous
support of this work.
1e
OMe
References and notes
S
O
3
4
HNTf2
HNTf2
98
70
1. Seminal paper: (a) Negishi, E.; King, A. O.; Okukado, N. J. Org. Chem. 1977, 42,
1821–1823; Recent papers and references therein: (b) Paixao, M. W.; Braga, A.
L.; Ludtke, D. S. J Br. Chem. Soc. 2008, 19, 813–830; (c) Amatore, M.; Gosmini, C.
Chem. Commun. 2008, 5019–5021; (d) Bedford, R. B.; Huwe, M.; Wilkinson, M.
C. Chem. Commun. 2009, 600–602; (e) Salvi, L.; Kim, J. G.; Walsh, P. J. J. Am.
Chem. Soc. 2009, 131, 12483–12493; (f) Duplais, C.; Krasovskiy, A.; Wattenberg,
A.; Lipshutz, B. H. Chem. Commun. 2010, 46, 562–564.
O
O
OMe
O
OAc
1f
2. First reported example of a Suzuki–Miyaura coupling with a benzyl halide: (a)
Maddaford, S. P.; Keay, B. A. J. Org. Chem. 1994, 59, 6501; Recent examples and
references cited therein: (b) Nobre, S. M.; Montiero, A. L. Tetrahedron Lett. 2004,
45, 8225; (c) McLaughlin, M. Org. Lett. 2005, 4875–4878; (d) Molander, G. A.;
Elia, M. D. J. Org. Chem. 2006, 71, 9198–9202; (e) Burns, J. M.; Fairlamb, I. J. S.;
Kapdi, A. R.; Sehnal, P.; Taylor, J. R. K. Org. Lett. 2007, 9, 5397; (f) Henry, N.;
Enguehard-Gueiffer, C.; Thery, I.; Guieffier, A. Eur. J. Org. Chem. 2008, 4824–
4827; (g) Alacid, E.; Najera, C. J. Org. Chem. 2009, 74, 2321–2327.
3. (a) Friedel, C.; Crafts, J. M. C.R. Hebd. Séances Acad. Sci. 1877, 84, 1392; (b)
Friedel, C.; Crafts, J. M. C.R. Hebd. Séances Acad. Sci. 1877, 84, 1450; (c) Olah, G. A.
Friedel–Crafts and Related Reactions; Wiley: New York, 1963; (d) Olah, G. A.
Friedel–Crafts Chemistry; Wiley: New York, 1973; (e) Roberts, R. M.; Khalaf, A. A.
Friedel–Crafts Alkylation Chemistry; Marcel Dekker: New York, 1984; (f) Olah, G.
A.; Krishnamurti, R.; Surya Prakash, G. K., 1st ed. In Comprehensive Organic
Synthesis; Pergamon: New York, 1991; Vol. 3,; (g) Bandini, M; Melloni, A.;
Umani-Ronchi, A. Angew. Chem., Int. Ed. 2004, 43, 550–556; (h) Bandini, M.;
Emer, E.; Tommasi, S.; Umani-Ronchi, A. Eur. J. Org. Chem. 2006, 3527–3544; (i)
Kaneko, M.; Hayashi, R.; Cook, G. R. Tetrahedron Lett. 2007, 48, 7085–7087.
4. (a) Tsuchimoto, T.; Tobita, K.; Hiyama, T.; Fukuzawa, S.-I. Synlett 1996, 557–
559; (b) Nakano, M.; Matsuo, J.-i.; Mukaiyama, T. Chem. Lett. 2000, 29, 1352–
1353; (c) De la Cruz, M. H. C.; Da Silva, J. F. C.; Lachter, E. R. Appl. Catal. A: Gen.
2003, 245, 377–382; (d) Smith, K.; El-Hiti, G. A. Curr. Org. Synth. 2004, 1, 253–
274; (e) Yi, W.-B.; Cai, C. J. Fluorine Chem. 2005, 126, 831–833; (f) Mantri, K.;
Komura, K.; Kubota1, Y.; Sugi, Y. J. Mol. Catal. A: Chem. 2005, 236, 168–175; (g)
Mertins, K.; Iovel, I.; Kischel, J.; Zapf, A.; Beller, M. Angew. Chem., Int. Ed. 2005,
44, 238–242; (h) Iovel, I.; Kischel, J.; Zapf, A.; Beller, M. Adv. Synth. Catal. 2006,
348, 691–695; (i) Rueping, M.; Nachtsheim, B. J.; Ieawsuwan, W. Adv. Synth.
Catal. 2006, 348, 1033–1037; (j) Sun, H. B.; Li, B.; Chen, S. J.; Li, J.; Hua, R. M.
Tetrahedron 2007, 63, 10185–10188; (k) Podder, S.; Choudhury, J.; Roy, S. J. Org.
Chem. 2007, 72, 3129–3132; (l) Zhang, C.; Gao, X.; Zhang, J.; Peng, X. Synlett
2010, 261–265.
OMe
OMe
OMe
SO2Ph
N
SO2Ph
N
5
6
OAc
HNTf2
HNTf2
88
81
1g
O
SO2Ph
N
O
a
All reactions were run in dichloromethane at room temperature.
Yields determined by after 20 min.
b
acidic conditions and that a weaker acid should be used. Rewar-
dingly the substitution product was obtained in 98% yield in the
presence of 5 mol % of HNTf2 (entry 2).16,18 These conditions
allowed also to couple 1e to the highly acid-sensitive furan. Both
reactions were regioselective. Triflimide was also an efficient cata-
lyst of the reaction of anisole or furan with furan and pyrrole-
derived acetates 1f and 1g.
All these reactions are believed to involve the formation of a
cationic species resulting from the dissociation of the protonated
acetate (Scheme 1). The nature of this cationic intermediate (pla-
nar cation or pyramidal ion pair) should influence the stereochem-
ical course of a reaction involving one enantiomer of an acetate
reagent derived from a secondary benzyl alcohol. We, therefore,
decided to study the stereochemical course of the reaction of ani-
sole with (s)-benzylmethyl acetate 1h in the presence of 5 mol %
HOTf (Scheme 2). After 30 min. at 100 °C, a 3:2 mixture of racemic
(HPLC) para- and ortho-benzylation products were obtained. This
confirmed the formation of a planar cationic intermediate.
We believe that this synthetic procedure should appeal to the
synthetic chemists: (a) it involves stable, easily handled and non-
genotoxic benzylating agents, (b) it avoids the use of metal cata-
lysts, (c) in most cases a solvent is not necessary, (d) it does not re-
quire protection from air or moisture, (e) it is operationally simple
5. (a) Gihani, M. T. E.; Heaney, H.; Shuhaibar, K. F. Synlett 1996, 871–872; (b)
Fukuzawa, S. I.; Tsuchimoto, T.; Hiyama, T. J. Org. Chem. 1997, 62, 151–156; (c)
Tsuchimoto, T.; Tobita, K.; Hiyama, T.; Fukuzawa, S. I. J. Org. Chem. 1997, 62,
6997–7005; (d) Sharma, G. V. M.; Mahalingam, A. K. J. Org. Chem. 1999, 64,
8943–8944; (e) Shiina, I.; Suzuki, M. Tetrahedron Lett. 2002, 43, 6391–6394; (f)
Noji, M.; Ohno, T.; Fuji, K.; Futabe, N.; Tajima, H.; Ishii, K. J. Org. Chem. 2003, 68,
9340–9347; (g) Mukaiyama, T.; Kamiyama, H.; Yamanaka, H. Chem. Lett. 2003,
32, 814–815.
6. Iovel, I.; Mertins, K.; Kischel, J.; Zapf, A.; Beller, M. Angew. Chem., Int. Ed. 2005,
44, 3913–3917.
7. Sun, G.; Wang, Z. Tetrahedron Lett. 2008, 49, 4929–4932.
8. (a) Kamalakar, G.; Komura, K.; Kubota, Y.; Sugi, Y. J. Chem. Technol. Biotechnol.
2006, 81, 981–988; (b) Mantri, K.; Komura, K.; Kubota, Y.; Sugi, Y. J. Mol. Catal.
A: Chem. 2005, 236, 168–175; (c) Olah, G. A.; Yamato J. Org. Chem. 1991, 56,
2089–2091.
9. Mathieu, B.; Ghosez, L. Tetrahedron Lett. 1997, 38, 5497–5500.
10. Ishii, A.; Kotera, O.; Saeki, T.; Mikami, K. Synlett 1997, 1145–1146.
11. For examples of Brönstedt acid catalysis of arylation of benzyl alcohol, see: (a)
Shirakawa, S.; Kobayashi, S. Org. Lett. 2007, 9, 311–314; (b) McCubbin, J. A.;
Krokhin, O. V. Tetrahedron Lett. 2010, 51, 2447–2449.
12. Mendoza, O.; Rossey, G.; Ghosez, L. Tetrahedron Lett. 2010, 51, 9561–9564. and
references cited therein.
13. Fu, T.-H.; Bonaparte, A.; Martin, S. F. Tetrahedron Lett. 2009, 50, 3253–3257.
14. (a) Marques da Silva, M. S.; Lucas da Costa, C.; de Magdala Pinto, M.; Lachter, E.
R. React. Polymers 1995, 25, 55–61; (b) Morais, M.; Torres, E. F.; Carmo, L. M. P.
M.; Pastura, N. M. R.; Gonzales, W. A.; dos Santos, A. C. B.; Lachter, E. R. Catal.
Today 1996, 28, 17–21.
OAc
OMe
15. Sarca, V. D.; Laali, K. K. Green Chem. 2006, 8, 615–620.
MeO
HOTf
+
16. For other examples showing that HNTf2 often gives cleaner chemistry than
HOTf, see: (a) Ishihara, K.; Kubota, M.; Yamamoto, H. Synlett 1996, 1045; (b)
Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc. 2004, 128, 10204–10205; (c) Li, W.;
Shi, M.; Li, Y. Chem. Eur. J. 2009, 15, 8852; (d) Lemechko, P.; Grau, F.; Antoniotti,
S.; Dunach, E. Tetrahedron Lett. 2007, 48, 5731.
(3:2)
no solvent
30min 100 °C
1h
OMe
17. General procedure for the alkylation reaction of anisole with anisyl acetate in the
presence of triflic acid: 430 lL of anisyl acetate (2.5 mmol, 1 equiv) and 2.2 mL
Scheme 2.