480
M. Lu et al.
CLUSTER
(10) Hayashi, Y.; Yamaguchi, J.; Hibino, K.; Sumiya, T.;
Watanabe, S.; Tanaka, F.; Notz, W.; Barbas, C. F. III. J. Am.
Chem. Soc. 2002, 124, 1866. (d) Zhang, H.; Mifsud, M.;
Tanaka, F.; Barbas, C. F. III. J. Am. Chem. Soc. 2006, 128,
9630.
Urushima, T.; Shoji, M.; Hashizume, D.; Koshino, H. Adv.
Synth. Catal. 2004, 346, 1435.
(11) DFT calculations were carried out with the Gaussian 09
package (Frisch M. J. et al. Gaussian 03, Revision D.01,
Gaussian, Inc.: Wallingford, CT, 2004). The geometries for
two enamines and two possible transition states which
involved hydrogen bonding, are fully optimized by M06
method using 6-31G+(d,p) basis set. The geometries have
been confirmed to be equilibrium geometries or transition
states by the harmonic frequencies calculations at the same
level of theory. The energy values in the gas phase are
further calculated with M06/6-311++G(d,p) method based
on the optimal geometries and corrected with the zero-point
energy calculated from M06/6-31G+(d,p) method. Solvent
effect from DMSO is mimicked by the PCM model and
single point energy calculation is done with M06/6-
311++G(d,p) with the gas phase geometry.
(3) For recent reviews, see: (a) Verkade, J. M. M.; van Hemert,
L. J. C.; Quaedflieg, P. J. L. M.; Rutjes, F. P. J. T. Chem. Soc.
Rev. 2008, 37, 29. (b) Ting, A.; Schaus, S. E. Eur. J. Org.
Chem. 2007, 5797.
(4) (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317,
1881. (b) Gerebtzoff, G.; Li-Blatter, X.; Fischer, H.;
Frentzel, A.; Seelig, A. ChemBioChem 2004, 5, 676.
(c) Jeschke, P. ChemBioChem 2004, 5, 570.
(5) (a) Asymmetric Fluoroorganic Chemistry: Synthesis,
Applications and Future Directions; Ramachandran, P. V.,
Ed.; American Chemical Society: Washington DC, 2000.
(b) Biomedical Frontiers of Fluorine Chemistry; Ojima, I.;
McCarthy, J. R.; Welch, J. T., Eds.; American Chemical
Society: Washington DC, 1996. (c) Welch, J. T.;
Eswarakrishnan, S. In Fluorine in Bioorganic Chemistry;
John Wiley and Sons: New York, 1990. (d) Resnati, G.
Tetrahedron 1993, 49, 9385.
(12) Normally, the Mannich reaction will proceed at the more
substituted site, see ref. 8a. Reversal of regioselectivity was
observed previously, see ref. 8b.
(6) Zhong, G.; Fan, J.; Barbas, C. F. III. Tetrahedron Lett. 2004,
45, 5681.
(7) (a) Chen, X.-H.; Luo, S.-W.; Tang, Z.; Cun, L.-F.; Mi,
A.-Q.; Jiang, Y.-Z.; Gong, L.-Z. Chem. Eur. J. 2007, 13,
689. (b) Xu, X.-Y.; Wang, Y.-Z.; Cun, L.-F.; Gong, L.-Z.
Tetrahedron Asymmetry 2007, 18, 237.
(8) For extensive substrate scope of ketones, see: (a) Notz, W.;
Watanabe, S.-I.; Chowdari, N. S.; Zhong, G.; Betancort,
J. M.; Tanaka, F.; Barbas, C. F. III. Adv. Synth. Catal. 2004,
346, 1131. (b) Chowdari, N. S.; Ahmad, M.; Albertshofer,
K.; Tanaka, F.; Barbas, C. F. III. Org. Lett. 2006, 8, 2839.
(9) Two examples of Mannich reaction between fluoroacetone
with preformed PMP-imine derived from activated ethyl
glyoxalate were reported with low ee (61% for ref. 2b) of
14%, see: Cobb, A. J. A.; Shaw, D. M.; Longbottom, D. A.;
Gold, J. B.; Ley, S. V. Org. Biomol. Chem. 2005, 3, 84.
(13) We found the linear product was rather sensitive in the
presence of acid, and will slowly undergo dimerization upon
prolonged storage, thus all aldehydes used in this study were
distilled or recrystallized prior to usage, and the products
were stored after reduction to corresponding alcohol. For
reduction, see: Hayashi, Y.; Tsuboi, W.; Shoji, M.; Suzuki,
N. J. Am. Chem. Soc. 2003, 125, 11208.
(14) The addition of H2O will slightly improve the ee, for similar
observations, see: (a) Enders, D.; Grondal, C.; Vrettou, M.
Synthesis 2006, 2155. For our previous study on the role of
H2O in the transition state, see: (b) Lu, M.; Zhu, D.; Lu, Y.;
Hou, Y.; Tan, B.; Zhong, G. Angew. Chem. Int. Ed. 2008, 47,
10187. (c) Zhu, D.; Lu, M.; Chua, P. J.; Tan, B.; Wang, F.;
Yang, X.; Zhong, G. Org. Lett. 2008, 10, 4585. (d) Tan, B.;
Zeng, X.; Lu, Y.; Chua, P. J.; Zhong, G. Org. Lett. 2009, 11,
1927.
Synlett 2011, No. 4, 477–480 © Thieme Stuttgart · New York