138
G.L. Gibson et al. / Inorganica Chimica Acta 369 (2011) 133–139
the molecule is particularly rich in aromatic groups relative to the
other side.
7
4
1
3
7a
3a
6
5
2
4. Conclusion
The utility of chiral-at-metal complexes in studying the reaction
mechanisms of transition metal complexes, and their potential for
introducing stereocontrol in catalytic systems, has been well-
established by Brunner and others, and chiral ruthenium half-
sandwich complexes have played a large role in the development
of this field [5]. Complex 2 represents an important new example
of a relatively configurationally stable system undergoing epimer-
ization at rates that will allow mechanistic study by NMR. It is also
an unusual example of diastereoisomerism involving the metal
coordination of (racemic mixtures) of P-chiral secondary phos-
phines [6], of relevance to the increasing interest in stereoselective
synthesis of P-chiral phosphine ligands via catalytic P–C bond-
forming reactions [7]. In this context, we are currently studying
the base-promoted dehydrohalogenation of complex 2; prelimin-
ary experiments confirm the formation of stereoisomers of the
Fig. 2. Numbering system used for the indenyl ligand.
corresponding terminal phosphido complex [Ru(g
5-indenyl)-
(@PButPh)(PPh3)]7 (3, 30 in a 1:7 ratio), which exhibit the diagnostic
deep blue color of these 5-coordinate complexes [2c] and are rela-
tively stable at room temperature in solution (ꢀh).8 We will report
more on these results in due course.
Acknowledgment
We thank the Natural Sciences and Engineering Research Coun-
cil (NSERC) of Canada for funding.
Ru
But
Appendix A. Supplementary material
Ph3P
P
Ph
Cl
Supplementary data associated with this article can be found, in
H
Fig. 3. Molecular structure of 2, assigned as 2b. Non-hydrogen atoms are
represented by Gaussian ellipsoids at the 20% probability level. The hydrogen
atom attached to P1 is shown with an arbitrarily small thermal parameter; all other
hydrogens are not shown. Selected interatomic distances (Å) and bond angles (deg)
(C⁄ denotes the centroid of the plane defined by C(7A)–C(1)–C(2)–C(3)–C(3A)):
Ru–P(1) = 2.2618(5), Ru–P(2) = 2.3242(4), Ru–Cl = 2.4366(4), Ru–C⁄ = 1.895, P(1)–
H(1P) = 1.292(18); P(1)–Ru–P(2) = 97.941(16), P(1)–Ru–Cl = 81.610(15), P(2)–Ru–
Cl = 87.346(14), P(1)–Ru–C⁄ = 125.2, P(2)–Ru–C⁄ = 126.1, Cl–Ru–C⁄ = 125.6. Indenyl
References
[1] E.J. Derrah, J.C. Marlinga, D. Mitra, D.M. Friesen, S.A. Hall, R. McDonald, L.
Rosenberg, Organometallics 24 (2005) 5817.
[2] (a) E.J. Derrah, K.E. Giesbrecht, R. McDonald, L. Rosenberg, Organometallics 27
(2008) 5025;
(b) E.J. Derrah, R. McDonald, L. Rosenberg, Chem. Commun. 46 (2010) 4592;
(c) E.J. Derrah, D.A. Pantazis, R. McDonald, L. Rosenberg, Organometallics 26
(2007) 1473;
slip distortion:
D
= d[Ru-C(7A),C(3A)] ꢂ d[Ru-C(1),C(3)] = 0.141 Å.
(d) E.J. Derrah, D.A. Pantazis, R. McDonald, L. Rosenberg, Angew. Chem., Int. Ed.
49 (2010) 3367.
[3] M.P. Gamasa, J. Gimeno, C. GonzalezBernardo, B.M. MartinVaca, D. Monti, M.
Bassetti, Organometallics 15 (1996) 302.
[4] (a) P. Vandersluis, A.L. Spek, Acta Crystallogr., Sect. A 46 (1990) 194;
(b) A.L. Spek, J. Appl. Crystallogr. 36 (2003) 7;
(c) PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht,
The Netherlands.
[5] (a) H. Brunner, Adv. Organomet. Chem. 18 (1980) 151;
(b) G. Consiglio, F. Morandini, Chem. Rev. 87 (1987) 761;
(c) H. Brunner, Angew. Chem., Int. Ed. 38 (1999) 1195;
(d) H. Brunner, Eur. J. Inorg. Chem. (2001) 905;
(e) H. Brunner, M. Weber, M. Zabel, Coord. Chem. Rev. 242 (2003) 3;
(f) H. Brunner, T. Tsuno, Acc. Chem. Res. 42 (2009) 1501.
[6] (a) E. Hey, A.C. Willis, S.B. Wild, Z. Naturforsch. B 44 (1989) 1041;
(b) A. Bader, T. Nullmeyers, M. Pabel, G. Salem, A.C. Willis, S.B. Wild, Inorg.
Chem. 34 (1995) 384;
But
Ru
Ru
Ph3P
Cl
Ph
But
Ph3P
Cl
P
P
H
Ph
H
one enantiomer of 2a
one enantiomer of 2b
(c) D.K. Wicht, I. Kovacik, D.S. Glueck, L.M. Liable-Sands, C.D. Incarvito, A.L.
Rheingold, Organometallics 18 (1999) 5141;
Fig. 4. Structures of 2a and 2b indicating the relative stereochemistry at ruthenium
and the secondary phosphine for each diastereomer. The double-headed arrows
indicate groups for which 1H NOE correlations are observed.
(d) C. Scriban, D.S. Glueck, A.G. DiPasquale, A.L. Rheingold, Organometallics 25
(2006) 5435;
7
31
2
202.5 MHz P{1H} data (d) for 3 and 30 in d6-benzene: (3) 257.7 (d, JPP = 60 Hz,
PButPh), 61.5 (d, PPh3); (30) 253.3 (d, JPP = 60 Hz, PButPh); 60.7 (d, PPh3).
2
ecule, while for 2a the secondary phosphine Ph lies toward the PPh3
side of the molecule. This latter relative stereochemistry is consis-
tent with the extreme 1H chemical shift dispersion we observe for
both the indenyl protons and the PPh3 protons, since one side of
8
Decomposition in solution leads principally to the products of orthometallation
[2c], 4 and 40, in a 1:1.3 ratio. 121.5 MHz P{1H} data (d) for 4 and 40 in d6-benzene:
31
(4) 83.4 (d, JPP = 26 Hz, HPButPh), ꢂ18.6 (d, PPh2C6H4); (40) 76.6 (d, JPP = 29 Hz,
2
2
HPButPh); ꢂ21.4 (d, PPh2C6H4).