Journal of the American Chemical Society
ARTICLE
Chemical methods for selective oxidations at methylene groups1,2
preferentially lead to ketone formation and show poor functional
group tolerance. Conversely, no carbonyl-containing products
were detected here (<0.1%), and this enzyme has a well-established
extended functional group tolerance.38 This was confirmed here
with the selective methylene hydroxylation in the presence of a
nearby double bond and of the different functionalities present on
the auxiliary itself. P450 enzymes, including CYP3A4, are known
to catalyze N- and O-demethylation, yet none of the N-methyl
groups of the theobromine auxiliary were affected during our
transformations. We believe that new auxiliaries can be designed to
afford different regio- and stereoselectivities for CYP3A4 transfor-
mations. This approach should also apply to other P450s, and to
enzymes from other families, to produce a series of biocatalyst/
auxiliary systems, each with complementary selectivities. This
strategy should therefore find broad application in synthesis.
(14) Kumar, S.; Halpert, J. R. Biochem. Biophys. Res. Commun. 2005,
338, 456–464.
(15) Kumar, S.; Halpert, J. R. Drug Metab. Dispos. 2006,
34, 1958–1965.
(16) Gillam, E. M. Chem. Res. Toxicol. 2008, 21, 220–231.
(17) Wong, T. S.; Arnold, F. H.; Schwaneberg, U. Biotechnol. Bioeng.
2004, 85, 351–358.
(18) Jonesa, B. C.; Middletona, D. S.; Youdima, K. Prog. Med. Chem.
2009, 47, 239–263.
(19) Lairson, L. L.; Watts, A. G.; Wakarchuk, W. W.; Withers, S. G.
Nat. Chem. Biol. 2006, 2, 724–728.
(20) Braunegg, G; de Raadt, A.; Feichtenhofer, S.; Griengl, H.;
Kopper, I. I.; Lehmann, A.; Weber, H. J. Angew. Chem., Int. Ed. 1999,
38, 2763–2766.
(21) de Raadt, A.; Griengl, H.; Weber, H. Chem.—Eur. J. 2001, 7,
27–31.
(22) de Raadt, A.; Griengl, H. Curr. Opin. Biotechnol. 2002,
13, 537–542.
(23) Li, S.; Chaulagain, M. R.; Knauff, A. R.; Podust, L. M.;
Montgomery, J.; Sherman, D. H. Proc. Natl. Acad. Sci. U.S.A. 2009,
106, 18463–18468.
’ ASSOCIATED CONTENT
(24) Yang, Z. D.; Chen, M.; Wu, R.; McDuffie, M.; Nadler, J. L.
Diabetologia 2002, 45, 1307–1314.
(25) Chen, M.; Yang, Z. D.; Wu, R.; Nadler, J. L. Endocrinology 2002,
143, 2341–2348.
(26) Coon, M. E.; Diegel, M.; Leshinsky, N.; Klaus, S. J. J. Immunol.
S
Supporting Information. Full experimental methods,
b
compound characterization, selected NMR spectra and HPLC
traces, and complete ref 9. This material is available free of charge
1999, 163, 6567–6574.
(27) Bright, J. J.; Du, C.; Coon, M.; Sriram, S.; Klaus, S. J. J. Immunol.
1998, 161, 7015–7022.
(28) De Vries, P.; Singer, J. W. Exp. Hematol. 2000, 28, 916–923.
(29) Rice, G. C.; Brown, P. C.; Nelson, R. J.; Bianco, J. A.; Singer,
J. W.; Bursten Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 3857–3861.
(30) Wattanasirichaigoon, S.; Menconi, M, J.; Fink, M. P. Crit. Care
Med. 2000, 28, 1540–1549.
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
(31) Shin, H. S.; Slattery, J. T. J. Pharm. Sci. 1998, 87, 390–393.
(32) Raban, M.; Mislow, K. Tetrahedron Lett. 1965, 48, 4249–4253.
(33) Schaus, S. E.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124,
1307–1315.
(34) Chefson, A.; Zhao, J.; Auclair, K. ChemBioChem 2007,
7, 916–919.
This work was funded by the National Science and Engineering
Research Council of Canada (NSERC), Merck Frosst Canada Ltꢀee,
Boehringer Ingelheim Canada, and AstraZeneca Canada. A.T.L. was
supported by scholarships from the NSERC, the Dr. Richard H.
Tomlinson Foundation, and the Winnipeg Police Association. We also
thank the Center in Green Chemistry and Catalysis for its support and
A. B. Charette (Universitꢀe de Montrꢀeal, Canada) for suggestions.
(35) Murayama, N.; Imai, N.; Nakane, T.; Shimizu, M.; Yamazaki, H.
Biochem. Pharmacol. 2007, 73, 2020–2026.
(36) Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507–514.
(37) Meunier, B.; de Visser, S. P.; Shaik, S. Chem. Rev. 2004, 104,
3947–80.
’ REFERENCES
(38) Wienkers, L. C.; Heath, T. G. Nat. Rev. Drug Discovery 2005,
4, 825–833.
(1) Chen, M. S.; White, M. C. Science 2007, 318, 783–787.
(2) Stang, E. M.; White, M. C. Nat. Chem. 2009, 1, 547–551.
(3) Brodsky, B. H.; Du Bois, J. J. Am. Chem. Soc. 2005, 127,
15391–15393.
(4) Chen, M. S.; White, M. C. Science 2010, 327, 566–571.
(5) Gomez, L.; Garcia-Bosch, I.; Company, A.; Benet-Buchholz, J.;
Polo, A.; Sala, X.; Ribas, X.; Costas, M. Angew. Chem., Int. Ed. 2009,
48, 5720–5723.
(6) Chen, K.; Baran, P. S. Nature 2009, 459, 824–828.
(7) Zhou, M.; Schley, N. D.; Crabtree, R. H. J. Am. Chem. Soc. 2010,
132, 12550–12551.
(8) Torres Pazmino, D. E.; Winkler, M.; Glieder, A.; Fraaije, M. W.
J. Biotechnol. 2010, 146, 9–24.
(39) Chefson, A.; Auclair, K. ChemBioChem 2007, 8, 1189–1197.
(40) Rowland, P.; Blaney, F. E.; Smyth, M. G.; Jones, J. J.; Leydon,
V. R.; Oxbrow, A. K.; Lewis, C. L.; Tennant, M. G.; Modi, S.; Eggleston,
D. S.; Chenery, R. J.; Bridges, A. M. J. Biol. Chem. 2006, 281, 7614–7622.
(41) Yano, J. K; Wester, M. R.; Schoch, G. A.; Griffin, K. J.; Stout,
C. D.; Johnson, E. F. J. Biol. Chem. 2004, 279, 38091–38094.
(42) Williams, P. A.; Cosme, J.; Vinkoviꢀc, D. M.; Ward, A.; Angove,
H. C.; Day, P. J.; Vonrhein, C.; Tickle, I. J.; Jhoti, H. Science 2004,
305, 683–686.
(43) Ekroos, M.; Sjogren, T. Proc. Natl. Acad. Sci. U.S.A. 2006, 103,
13682–13687.
(44) de Graaf, C.; Vermeulen, N. P. E. J. Med. Chem. 2005, 48,
2308–2318.
(45) Eteng, M. U.; Eyong, E. U.; Akpanyung, E. O.; Agiang, M. A.;
Aremu, C. Y. Plant Foods Hum. Nutr. 1997, 51, 231–243.
(9) Szczebara, F. M.; et al. Nat. Biotechnol. 2003, 21, 143–149.
(10) Duport, R.; Spagnoli, E.; Degryse, D.; Pompon, D. Nat.
Biotechnol. 1998, 16, 186–189.
(11) Sonomoto, K.; Hoq, M. M.; Tanaka, A.; Fukui, S. Appl. Environ.
Microbiol. 1983, 45, 436–443.
(12) Fujii, T.; Fujii, Y.; Machida, K.; Ochiai, A.; Ito, M. Biosci.,
Biotechnol., Biochem. 2009, 73, 805–810.
(13) Falck, J. R.; Reddya, Y. K.; Hainesa, D. C.; Reddya, K. M.;
Krishnaa, U. M.; Grahama, S.; Murrya, B.; Petersona, J. A. Tetrahedron
Lett. 2001, 42, 4131–4133.
7858
dx.doi.org/10.1021/ja200551y |J. Am. Chem. Soc. 2011, 133, 7853–7858