Published on Web 02/11/2006
Asymmetric Hydrogenation of Trisubstituted Olefins with
Iridium-Phosphine Thiazole Complexes: A Further
Investigation of the Ligand Structure
Christian Hedberg,† Klas Ka¨llstro¨m,† Peter Brandt,‡ Lars Kristian Hansen,§ and
Pher G. Andersson*,†
Contribution from the Organic Chemistry, Department of Chemistry, Uppsala UniVersity,
Box 599, 751 24 Uppsala, Sweden, Department of Chemistry, BioVitrum AB, 112 76 Stockholm,
Sweden, and Institute of Chemistry, Faculty of Mathematics-Natural Sciences,
UiT, 9037 Tromsø, Norway
Received October 21, 2005; E-mail: Pher.Andersson@kemi.uu.se.
Abstract: New chiral bidentate phoshine thiazoles have been prepared and successfully applied as ligands
in the homogeneous iridium-catalyzed asymmetric hydrogenation of aryl alkenes and aryl alkene esters.
The ligands are designed to be highly modular and have one common chiral intermediate, from which
diversity can be introduced at a late stage in the synthetic pathway. It was found that a six-member-ring
backbone of the rigid ligand structure was preferred over seven- or five-member rings. In this study it is
shown that the substituent pattern of the ligands has a major influence on the stereochemical outcome of
the products. By applying the selectivity model proposed in this study, it is possible to match different
substrates against different catalysts. In this way, good to excellent enantioselectivity can be obtained for
typically difficult substrates. Geometrically different derivatives of R- and â-methyl cinnamic acid ethyl esters
were hydrogenated, to demonstrate the validity of the selectivity model and to verify the importance of
steric and electronic matching of the catalyst and the substrate.
Introduction
iridium-catalyzed asymmetric hydrogenation is still highly sub-
strate dependent and the development of efficient chiral ligands
that tolerate a broader range of substrates remains a challenge.
Pfaltz has developed his original ligand structure to obtain better
enantioselectiveties with a broader range of substrates.9a-i
In this publication, we report a new class of iridium phosphine
thiazole complexes, which are highly enantioselective for a wide
range of substrates. Recently, a number of papers have appeared
in the literature dealing with the mechanism of the Ir-catalyzed
asymmetric hydrogenation of aryl alkenes.10-12 Since little is
known about the mechanism or the enantioselectivity determin-
Enantioselective hydrogenation is one of the most powerful
methods in asymmetric catalysis.1 While ruthenium- and
rhodium-catalyzed asymmetric hydrogenations of chelating
olefins have a long history,2 unfunctionalized olefins still
represent a challenging class of substrates. Early work in this
field has mainly focused on chiral metallocene complexes.3a-e
During the past few years, Pfaltz and co-workers have success-
fully developed and used phoshine and phosphinite oxazoline
Ir complexes for the asymmetric hydrogenation of weakly
coordinating olefins4 and imines,5 subsequently followed by
others.6a-j Recently there have been more structural variations
in ligand design such as the oxazoline carbene ligand structure
of Burgess and co-workers and the use of a non-carbon chiral
sulfoxide phosphine ligand reported by Ellman.7,8 However,
(6) (a) Hou, D,-R.; Reibenspies, J. H.; Colacot, T. J.; Burgess, K. Chem.s
Eur. J. 2000, 7, 5391. (b) Powell, M. T.; Hou, D.-R.; Perry, M. C.; Cui,
X.; Burgess, K. J. Am. Chem. Soc. 2001, 123, 8878. (c) Bernardinelli, G.
H.; Kundig, E. P.; Pfaltz, A.; Radkowski, K.; Zimmermann, N.; Neuburger-
Zehnder, M. HelV. Chim. Acta 2001, 84. 3233. (d) Tang, W.; Wang, W.;
Zhang, X. Angew. Chem., Int. Ed. 2003, 42, 943. (e) Bunlaksananusorn,
T.; Polborn, K.; Knochel, P. Angew. Chem., Int. Ed. 2003, 42, 3941. (f)
Bolm, C.; Focken, T.; Raabe, G. Tetrahedron: Asymmetry 2003, 14, 1733.
(g) Xu, G.; Gilbertson, S. R. Tetrahedron Lett. 2003, 953. (h) Cozzi, P.
G.; Menges, F.; Kaiser, S. Synlett 2003, 833. (i) Liu, D.; Tang, W.; Zhang,
X. Org. Lett. 2004, 4, 513. (j) For a recent review see: Cui, X.; Burgess,
K. Chem. ReV. 2005, 105, 3272.
† Uppsala University.
‡ Biovitrum AB.
§ UiT.
(1) Blaser, H.-U.; Schmidt, E. Asymmetric Catalysis on Industrial Scale, 1st
ed.; Wiley & Sons: New York, 2004.
(2) Brown, J. M. In ComprehensiVe Asymmetric Catalysis; Jacobsen, E. N.,
Pfaltz, A., Yamamoto, H., Eds.; Springer-Verlag: Berlin, 1999; Vol. I, pp
121-182.
(7) Perry, M. C.; Cui X.; Powell, M. T.; Hou, D.-R.; Reibenspies, J. H. Burgess,
K. J. Am. Chem. Soc. 2003, 125. 113.
(3) (a) Cesarotti, E.; Ugo, R.; Kagan, H. B. Angew. Chem., Int. Ed. Engl. 1979,
18, 10. (b) Halterman, R. K.; Vollhardt, K. P. C.; Welker, M. E.; Blaeser,
D.; Boese, R. J. Am. Chem. Soc. 1987, 109, 8105. (c) Paquette, L. A.;
McKinney, J. A.; McLaughlin, M. L.; Rheingold, A. L. Tetrahedron Lett.
1986, 27, 5599. (d) Waymouth, R.; Pino, P. J. Am. Chem. Soc. 1990, 112,
4911. (e) Broene, R. D.; Buchwald, S. L. J. Am. Chem. Soc. 1993, 115,
12569.
(8) Schenkel, L. B.; Ellman, J. A. J. Org. Chem. 2004, 69, 1800.
(9) (a) Hilgraf, R.; Pfaltz, A. Synlett 1999, 1814. (b) Cozzi, P. G.; Zimmermann,
N.; Hilgraf, R.; Schaffner, S.; Pfaltz, A. AdV. Synth. Catal. 2001. 343, 450.
(c) Blankenstein, J.; Pfaltz, A. Angew. Chem., Int. Ed. 2001, 40, 4445. (d)
Menges, F.; Neuburger, M.; Pfaltz, A. Org. Lett. 2002, 4, 4713. (e) Menges,
F.; Pfaltz, A. AdV. Synth. Catal. 2002, 344, 40. (f) Durry, W. J., III;
Zimmerman, N.; Keenan, M.; Hayashi, M.; Kaiser, S.; Goddard, R.; Pfaltz,
A. Angew. Chem., Int. Ed. 2004, 43, 70. (g) Smidt, S. P.; Menges, F.;
Pfaltz, A. Org. Lett. 2004, 6, 2023. (h) Smidt, S. P.; Menges, F.; Pfaltz, A.
Org. Lett. 2004, 6, 3653. (i) Hilgraf, R.; Pfaltz, A. AdV. Synth. Catal. 2005,
347, 61.
(4) Lightfoot, A.; Schnider, P.; Pfaltz, A. Angew. Chem., Int. Ed. 1998, 37,
2897
(5) Schnider, P.; Koch, G.; Pretot, R.; Wang, G.; Bohnen, F. M.; Kruger, C.;
Pfaltz, A. Chem.sEur. J. 1997, 3, 887.
9
10.1021/ja057178b CCC: $33.50 © 2006 American Chemical Society
J. AM. CHEM. SOC. 2006, 128, 2995-3001
2995